integrating more uci-multiclass datasets

This commit is contained in:
Alejandro Moreo Fernandez 2024-04-12 18:08:00 +02:00
parent 3095d7092c
commit 4abec6629b
5 changed files with 167 additions and 18 deletions

View File

@ -29,12 +29,17 @@ def newLR():
def calibratedLR():
return CalibratedClassifierCV(LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1))
return CalibratedClassifierCV(newLR())
__C_range = np.logspace(-3, 3, 7)
lr_params = {'classifier__C': __C_range, 'classifier__class_weight': [None, 'balanced']}
svmperf_params = {'classifier__C': __C_range}
lr_params = {
'classifier__C': __C_range,
'classifier__class_weight': [None, 'balanced']
}
svmperf_params = {
'classifier__C': __C_range
}
def quantification_models():

View File

@ -0,0 +1,113 @@
import pickle
import os
import numpy as np
from sklearn.linear_model import LogisticRegression
import quapy as qp
from quapy.method.aggregative import PACC, EMQ, KDEyML
from quapy.model_selection import GridSearchQ
from quapy.protocol import UPP
from pathlib import Path
SEED = 1
def newLR():
return LogisticRegression(max_iter=3000)
# typical hyperparameters explored for Logistic Regression
logreg_grid = {
'C': np.logspace(-3, 3, 7),
'class_weight': ['balanced', None]
}
def wrap_hyper(classifier_hyper_grid:dict):
return {'classifier__'+k:v for k, v in classifier_hyper_grid.items()}
METHODS = [
('PACC', PACC(newLR()), wrap_hyper(logreg_grid)),
('EMQ', EMQ(newLR()), wrap_hyper(logreg_grid)),
('KDEy-ML', KDEyML(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.linspace(0.01, 0.2, 20)}}),
]
def show_results(result_path):
import pandas as pd
df = pd.read_csv(result_path+'.csv', sep='\t')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE", "MRAE"], margins=True)
print(pv)
if __name__ == '__main__':
qp.environ['SAMPLE_SIZE'] = 500
qp.environ['N_JOBS'] = -1
n_bags_val = 250
n_bags_test = 1000
result_dir = f'results/ucimulti'
os.makedirs(result_dir, exist_ok=True)
global_result_path = f'{result_dir}/allmethods'
with open(global_result_path + '.csv', 'wt') as csv:
csv.write(f'Method\tDataset\tMAE\tMRAE\n')
for method_name, quantifier, param_grid in METHODS:
print('Init method', method_name)
with open(global_result_path + '.csv', 'at') as csv:
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS[:5]:
if dataset in ['covertype', 'diabetes']:
continue
print('init', dataset)
local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe')
if os.path.exists(local_result_path):
print(f'result file {local_result_path} already exist; skipping')
report = qp.util.load_report(local_result_path)
else:
with qp.util.temp_seed(SEED):
data = qp.datasets.fetch_UCIMulticlassDataset(dataset, verbose=True)
# model selection
train, test = data.train_test
train, val = train.split_stratified(random_state=SEED)
protocol = UPP(val, repeats=n_bags_val)
modsel = GridSearchQ(
quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error='mae'
)
try:
modsel.fit(train)
print(f'best params {modsel.best_params_}')
print(f'best score {modsel.best_score_}')
quantifier = modsel.best_model()
except:
print('something went wrong... trying to fit the default model')
quantifier.fit(train)
protocol = UPP(test, repeats=n_bags_test)
report = qp.evaluation.evaluation_report(
quantifier, protocol, error_metrics=['mae', 'mrae'], verbose=True
)
report.to_csv(local_result_path)
means = report.mean()
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\n')
csv.flush()
show_results(global_result_path)

View File

@ -591,7 +591,7 @@ def fetch_UCIBinaryLabelledCollection(dataset_name, data_home=None, verbose=Fals
return data
def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, verbose=False, min_ipc=100) -> Dataset:
def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, min_class_support=100, verbose=False) -> Dataset:
"""
Loads a UCI multiclass dataset as an instance of :class:`quapy.data.base.Dataset`.
@ -614,16 +614,16 @@ def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, ver
:param data_home: specify the quapy home directory where collections will be dumped (leave empty to use the default
~/quay_data/ directory)
:param test_split: proportion of documents to be included in the test set. The rest conforms the training set
:param min_class_support: minimum number of istances per class. Classes with fewer instances
are discarded (deafult is 100)
:param verbose: set to True (default is False) to get information (stats) about the dataset
:param min_ipc: minimum number of istances per class. Classes with less instances than min_ipc are discarded
(deafult is 100)
:return: a :class:`quapy.data.base.Dataset` instance
"""
data = fetch_UCIMulticlassLabelledCollection(dataset_name, data_home, verbose, min_ipc)
data = fetch_UCIMulticlassLabelledCollection(dataset_name, data_home, min_class_support, verbose=verbose)
return Dataset(*data.split_stratified(1 - test_split, random_state=0))
def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=False, min_ipc=100) -> LabelledCollection:
def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, min_class_support=100, verbose=False) -> LabelledCollection:
"""
Loads a UCI multiclass collection as an instance of :class:`quapy.data.base.LabelledCollection`.
@ -646,9 +646,9 @@ def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=
:param data_home: specify the quapy home directory where the dataset will be dumped (leave empty to use the default
~/quay_data/ directory)
:param test_split: proportion of documents to be included in the test set. The rest conforms the training set
:param min_class_support: minimum number of istances per class. Classes with fewer instances
are discarded (deafult is 100)
:param verbose: set to True (default is False) to get information (stats) about the dataset
:param min_ipc: minimum number of istances per class. Classes with less instances than min_ipc are discarded
(deafult is 100)
:return: a :class:`quapy.data.base.LabelledCollection` instance
"""
assert dataset_name in UCI_MULTICLASS_DATASETS, \
@ -736,13 +736,20 @@ def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=
file = join(data_home, 'uci_multiclass', dataset_name+'.pkl')
def download(id, name):
data = fetch_ucirepo(id=id)
X, y = data['data']['features'].to_numpy(), data['data']['targets'].to_numpy().squeeze()
# classes represented as arrays are transformed to tuples to treat them as signle objects
df = fetch_ucirepo(id=id)
df.data.features = pd.get_dummies(df.data.features, drop_first=True)
X, y = df.data.features.to_numpy(), df.data.targets.to_numpy().squeeze()
# classes represented as arrays are transformed to tuples to treat them as single objects
if name == 'support2':
y[:, 2] = np.fromiter((str(elm) for elm in y[:, 2]), dtype='object')
raise ValueError('this is support 2')
if y.ndim > 1:
y = np.fromiter((tuple(elm) for elm in y), dtype='object')
raise ValueError('more than one y')
classes = np.sort(np.unique(y))
y = np.searchsorted(classes, y)
return LabelledCollection(X, y)
@ -759,11 +766,11 @@ def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=
return LabelledCollection(X, y)
data = pickled_resource(file, download, identifier, dataset_name)
data = filter_classes(data, min_ipc)
data = filter_classes(data, min_class_support)
if data.n_classes <= 2:
raise ValueError(
f'Dataset {dataset_name} has too few valid classes to be multiclass with {min_ipc=}. '
'Try a lower value for min_ipc.'
f'After filtering out classes with less than {min_class_support=} instances, the dataset {dataset_name} '
f'is no longer multiclass. Try a reducing this value.'
)
if verbose:
@ -848,7 +855,6 @@ def fetch_lequa2022(task, data_home=None):
return train, val_gen, test_gen
def fetch_IFCB(single_sample_train=True, for_model_selection=False, data_home=None):
"""
Loads the IFCB dataset for quantification from `Zenodo <https://zenodo.org/records/10036244>`_ (for more

View File

@ -21,7 +21,7 @@ class QuaNetTrainer(BaseQuantifier):
Example:
>>> import quapy as qp
>>> from quapy.method.meta import QuaNet
>>> from quapy.method_name.meta import QuaNet
>>> from quapy.classification.neural import NeuralClassifierTrainer, CNNnet
>>>
>>> # use samples of 100 elements

View File

@ -6,6 +6,9 @@ import pickle
import urllib
from pathlib import Path
from contextlib import ExitStack
import pandas as pd
import quapy as qp
import numpy as np
@ -246,6 +249,28 @@ def _check_sample_size(sample_size):
return sample_size
def load_report(path, as_dict=False):
def str2prev_arr(strprev):
within = strprev.strip('[]').split()
float_list = [float(p) for p in within]
float_list[-1] = 1. - sum(float_list[:-1])
return np.asarray(float_list)
df = pd.read_csv(path, index_col=0)
df['true-prev'] = df['true-prev'].apply(str2prev_arr)
df['estim-prev'] = df['estim-prev'].apply(str2prev_arr)
if as_dict:
d = {}
for col in df.columns.values:
vals = df[col].values
if col in ['true-prev', 'estim-prev']:
vals = np.vstack(vals)
d[col] = vals
return d
else:
return df
class EarlyStop:
"""
A class implementing the early-stopping condition typically used for training neural networks.