over time experiments
This commit is contained in:
parent
1661a79dbb
commit
4e6014c0f2
|
|
@ -14,7 +14,7 @@ from sklearn.feature_extraction.text import TfidfVectorizer
|
||||||
from sklearn.linear_model import LogisticRegression as LR, LogisticRegressionCV
|
from sklearn.linear_model import LogisticRegression as LR, LogisticRegressionCV
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
import quapy as qp
|
import quapy as qp
|
||||||
from data import LabelledCollection, Dataset
|
from quapy.data import LabelledCollection, Dataset
|
||||||
import quapy.functional as F
|
import quapy.functional as F
|
||||||
from method.composable import QUnfoldWrapper
|
from method.composable import QUnfoldWrapper
|
||||||
from quapy.method.aggregative import DistributionMatchingY, EMQ, KDEyML
|
from quapy.method.aggregative import DistributionMatchingY, EMQ, KDEyML
|
||||||
|
|
@ -165,7 +165,7 @@ def plot_prevalences(results_dict, target_class=1, target_label='positive', save
|
||||||
dates_smooth, y_smooth = smooth_curve(dates, target_component)
|
dates_smooth, y_smooth = smooth_curve(dates, target_component)
|
||||||
|
|
||||||
if method=='true-prev':
|
if method=='true-prev':
|
||||||
line,=plt.plot(dates_smooth, y_smooth, label=method, linewidth=3, linestyle='-')
|
line,=plt.plot(dates_smooth, y_smooth, label=method, linewidth=3, linestyle='-', color='black')
|
||||||
else:
|
else:
|
||||||
line,=plt.plot(dates_smooth, y_smooth, label=method, linewidth=2, linestyle='--')
|
line,=plt.plot(dates_smooth, y_smooth, label=method, linewidth=2, linestyle='--')
|
||||||
plt.plot(dates, target_component, 'o', markersize=10, color=line.get_color())
|
plt.plot(dates, target_component, 'o', markersize=10, color=line.get_color())
|
||||||
|
|
@ -259,10 +259,10 @@ else:
|
||||||
def methods():
|
def methods():
|
||||||
yield 'CC', CC(new_classifier(), fit_classifier=to_fit)
|
yield 'CC', CC(new_classifier(), fit_classifier=to_fit)
|
||||||
yield 'ACC', ACC(new_classifier(), fit_classifier=to_fit)
|
yield 'ACC', ACC(new_classifier(), fit_classifier=to_fit)
|
||||||
|
yield 'SLD', EMQ(new_classifier(), fit_classifier=to_fit)
|
||||||
yield 'HDy', DistributionMatchingY(new_classifier(), fit_classifier=to_fit)
|
yield 'HDy', DistributionMatchingY(new_classifier(), fit_classifier=to_fit)
|
||||||
yield 'HDx', HDxDensify()
|
yield 'HDx', HDxDensify()
|
||||||
yield 'KMM', QUnfoldWrapperDensify(KMM())
|
yield 'KMM', QUnfoldWrapperDensify(KMM())
|
||||||
yield 'SLD', EMQ(new_classifier(), fit_classifier=to_fit)
|
|
||||||
yield 'KDEy', KDEyML(new_classifier(), fit_classifier=to_fit)
|
yield 'KDEy', KDEyML(new_classifier(), fit_classifier=to_fit)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -3,7 +3,7 @@ from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
||||||
from sklearn.model_selection import GridSearchCV
|
from sklearn.model_selection import GridSearchCV
|
||||||
|
|
||||||
import quapy as qp
|
import quapy as qp
|
||||||
from data import LabelledCollection
|
from quapy.data import LabelledCollection
|
||||||
from method.non_aggregative import DMx
|
from method.non_aggregative import DMx
|
||||||
from protocol import APP
|
from protocol import APP
|
||||||
from quapy.method.aggregative import CC, DMy, ACC, EMQ
|
from quapy.method.aggregative import CC, DMy, ACC, EMQ
|
||||||
|
|
@ -20,9 +20,9 @@ def cls():
|
||||||
def gen_methods():
|
def gen_methods():
|
||||||
yield CC(cls()), r'CC$_{10' + r'\%}$'
|
yield CC(cls()), r'CC$_{10' + r'\%}$'
|
||||||
yield ACC(cls()), 'ACC'
|
yield ACC(cls()), 'ACC'
|
||||||
|
yield EMQ(cls()), 'SLD'
|
||||||
yield DMy(cls(), val_split=10, nbins=10, n_jobs=-1), 'HDy'
|
yield DMy(cls(), val_split=10, nbins=10, n_jobs=-1), 'HDy'
|
||||||
yield DMx(nbins=10, n_jobs=-1), 'HDx'
|
yield DMx(nbins=10, n_jobs=-1), 'HDx'
|
||||||
yield EMQ(cls()), 'SLD'
|
|
||||||
# yield EMQ(cls(), calib='vs'), 'SLD-VS'
|
# yield EMQ(cls(), calib='vs'), 'SLD-VS'
|
||||||
|
|
||||||
def gen_data():
|
def gen_data():
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue