bugfix when the number of positive elemnts for one of the classes is 0

This commit is contained in:
Alejandro Moreo Fernandez 2022-03-14 16:42:41 +01:00
parent cfdf2e35bd
commit 8ee5e499f5
1 changed files with 130 additions and 421 deletions

View File

@ -23,109 +23,49 @@ from quapy.method.base import BaseQuantifier, BinaryQuantifier
class AggregativeQuantifier(BaseQuantifier): class AggregativeQuantifier(BaseQuantifier):
""" """
Abstract class for quantification methods that base their estimations on the aggregation of classification Abstract class for quantification methods that base their estimations on the aggregation of classification
results. Aggregative Quantifiers thus implement a :meth:`classify` method and maintain a :attr:`learner` attribute. results. Aggregative Quantifiers thus implement a _classify_ method and maintain a _learner_ attribute.
Subclasses of this abstract class must implement the method :meth:`aggregate` which computes the aggregation
of label predictions. The method :meth:`quantify` comes with a default implementation based on
:meth:`classify` and :meth:`aggregate`.
""" """
@abstractmethod @abstractmethod
def fit(self, data: LabelledCollection, fit_learner=True): def fit(self, data: LabelledCollection, fit_learner=True): ...
"""
Trains the aggregative quantifier
:param data: a :class:`quapy.data.base.LabelledCollection` consisting of the training data
:param fit_learner: whether or not to train the learner (default is True). Set to False if the
learner has been trained outside the quantifier.
:return: self
"""
...
@property @property
def learner(self): def learner(self):
"""
Gives access to the classifier
:return: the classifier (typically an sklearn's Estimator)
"""
return self.learner_ return self.learner_
@learner.setter @learner.setter
def learner(self, classifier): def learner(self, value):
""" self.learner_ = value
Setter for the classifier
:param classifier: the classifier def preclassify(self, instances):
""" return self.classify(instances)
self.learner_ = classifier
def classify(self, instances): def classify(self, instances):
"""
Provides the label predictions for the given instances.
:param instances: array-like
:return: np.ndarray of shape `(n_instances,)` with label predictions
"""
return self.learner.predict(instances) return self.learner.predict(instances)
def quantify(self, instances): def quantify(self, instances):
"""
Generate class prevalence estimates for the sample's instances by aggregating the label predictions generated
by the classifier.
:param instances: array-like
:return: `np.ndarray` of shape `(self.n_classes_,)` with class prevalence estimates.
"""
classif_predictions = self.classify(instances) classif_predictions = self.classify(instances)
return self.aggregate(classif_predictions) return self.aggregate(classif_predictions)
@abstractmethod @abstractmethod
def aggregate(self, classif_predictions: np.ndarray): def aggregate(self, classif_predictions: np.ndarray): ...
"""
Implements the aggregation of label predictions.
:param classif_predictions: `np.ndarray` of label predictions
:return: `np.ndarray` of shape `(self.n_classes_,)` with class prevalence estimates.
"""
...
def get_params(self, deep=True): def get_params(self, deep=True):
"""
Return the current parameters of the quantifier.
:param deep: for compatibility with sklearn
:return: a dictionary of param-value pairs
"""
return self.learner.get_params() return self.learner.get_params()
def set_params(self, **parameters): def set_params(self, **parameters):
"""
Set the parameters of the quantifier.
:param parameters: dictionary of param-value pairs
"""
self.learner.set_params(**parameters) self.learner.set_params(**parameters)
@property @property
def classes_(self): def n_classes(self):
""" return len(self.classes_)
Class labels, in the same order in which class prevalence values are to be computed.
This default implementation actually returns the class labels of the learner.
:return: array-like @property
""" def classes_(self):
return self.learner.classes_ return self.learner.classes_
@property @property
def aggregative(self): def aggregative(self):
"""
Returns True, indicating the quantifier is of type aggregative.
:return: True
"""
return True return True
@ -137,6 +77,9 @@ class AggregativeProbabilisticQuantifier(AggregativeQuantifier):
probabilities. probabilities.
""" """
def preclassify(self, instances):
return self.predict_proba(instances)
def posterior_probabilities(self, instances): def posterior_probabilities(self, instances):
return self.learner.predict_proba(instances) return self.learner.predict_proba(instances)
@ -159,14 +102,13 @@ class AggregativeProbabilisticQuantifier(AggregativeQuantifier):
# Helper # Helper
# ------------------------------------ # ------------------------------------
def _training_helper(learner, def training_helper(learner,
data: LabelledCollection, data: LabelledCollection,
fit_learner: bool = True, fit_learner: bool = True,
ensure_probabilistic=False, ensure_probabilistic=False,
val_split: Union[LabelledCollection, float] = None): val_split: Union[LabelledCollection, float] = None):
""" """
Training procedure common to all Aggregative Quantifiers. Training procedure common to all Aggregative Quantifiers.
:param learner: the learner to be fit :param learner: the learner to be fit
:param data: the data on which to fit the learner. If requested, the data will be split before fitting the learner. :param data: the data on which to fit the learner. If requested, the data will be split before fitting the learner.
:param fit_learner: whether or not to fit the learner (if False, then bypasses any action) :param fit_learner: whether or not to fit the learner (if False, then bypasses any action)
@ -218,10 +160,8 @@ def _training_helper(learner,
# ------------------------------------ # ------------------------------------
class CC(AggregativeQuantifier): class CC(AggregativeQuantifier):
""" """
The most basic Quantification method. One that simply classifies all instances and counts how many have been The most basic Quantification method. One that simply classifies all instances and countes how many have been
attributed to each of the classes in order to compute class prevalence estimates. attributed each of the classes in order to compute class prevalence estimates.
:param learner: a sklearn's Estimator that generates a classifier
""" """
def __init__(self, learner: BaseEstimator): def __init__(self, learner: BaseEstimator):
@ -229,40 +169,19 @@ class CC(AggregativeQuantifier):
def fit(self, data: LabelledCollection, fit_learner=True): def fit(self, data: LabelledCollection, fit_learner=True):
""" """
Trains the Classify & Count method unless `fit_learner` is False, in which case, the classifier is assumed to Trains the Classify & Count method unless _fit_learner_ is False, in which case it is assumed to be already fit.
be already fit and there is nothing else to do. :param data: training data
:param data: a :class:`quapy.data.base.LabelledCollection` consisting of the training data
:param fit_learner: if False, the classifier is assumed to be fit :param fit_learner: if False, the classifier is assumed to be fit
:return: self :return: self
""" """
self.learner, _ = _training_helper(self.learner, data, fit_learner) self.learner, _ = training_helper(self.learner, data, fit_learner)
return self return self
def aggregate(self, classif_predictions: np.ndarray): def aggregate(self, classif_predictions):
"""
Computes class prevalence estimates by counting the prevalence of each of the predicted labels.
:param classif_predictions: array-like with label predictions
:return: `np.ndarray` of shape `(self.n_classes_,)` with class prevalence estimates.
"""
return F.prevalence_from_labels(classif_predictions, self.classes_) return F.prevalence_from_labels(classif_predictions, self.classes_)
class ACC(AggregativeQuantifier): class ACC(AggregativeQuantifier):
"""
`Adjusted Classify & Count <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_,
the "adjusted" variant of :class:`CC`, that corrects the predictions of CC
according to the `misclassification rates`.
:param learner: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, learner: BaseEstimator, val_split=0.4): def __init__(self, learner: BaseEstimator, val_split=0.4):
self.learner = learner self.learner = learner
@ -270,14 +189,13 @@ class ACC(AggregativeQuantifier):
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None): def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None):
""" """
Trains a ACC quantifier. Trains a ACC quantifier
:param data: the training set :param data: the training set
:param fit_learner: set to False to bypass the training (the learner is assumed to be already fit) :param fit_learner: set to False to bypass the training (the learner is assumed to be already fit)
:param val_split: either a float in (0,1) indicating the proportion of training instances to use for :param val_split: either a float in (0,1) indicating the proportion of training instances to use for
validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection
indicating the validation set itself, or an int indicating the number `k` of folds to be used in `k`-fold indicating the validation set itself, or an int indicating the number k of folds to be used in kFCV
cross validation to estimate the parameters to estimate the parameters
:return: self :return: self
""" """
if val_split is None: if val_split is None:
@ -293,7 +211,7 @@ class ACC(AggregativeQuantifier):
pbar.set_description(f'{self.__class__.__name__} fitting fold {k}') pbar.set_description(f'{self.__class__.__name__} fitting fold {k}')
training = data.sampling_from_index(training_idx) training = data.sampling_from_index(training_idx)
validation = data.sampling_from_index(validation_idx) validation = data.sampling_from_index(validation_idx)
learner, val_data = _training_helper(self.learner, training, fit_learner, val_split=validation) learner, val_data = training_helper(self.learner, training, fit_learner, val_split=validation)
y_.append(learner.predict(val_data.instances)) y_.append(learner.predict(val_data.instances))
y.append(val_data.labels) y.append(val_data.labels)
@ -302,22 +220,35 @@ class ACC(AggregativeQuantifier):
class_count = data.counts() class_count = data.counts()
# fit the learner on all data # fit the learner on all data
self.learner, _ = _training_helper(self.learner, data, fit_learner, val_split=None) self.learner, _ = training_helper(self.learner, data, fit_learner, val_split=None)
else: else:
self.learner, val_data = _training_helper(self.learner, data, fit_learner, val_split=val_split) self.learner, val_data = training_helper(self.learner, data, fit_learner, val_split=val_split)
y_ = self.learner.predict(val_data.instances) y_ = self.learner.predict(val_data.instances)
y = val_data.labels y = val_data.labels
class_count = val_data.counts()
self.cc = CC(self.learner) self.cc = CC(self.learner)
# estimate the matrix with entry (i,j) being the estimate of P(yi|yj), that is, the probability that a # estimate the matrix with entry (i,j) being the estimate of P(yi|yj), that is, the probability that a
# document that belongs to yj ends up being classified as belonging to yi # document that belongs to yj ends up being classified as belonging to yi
self.Pte_cond_estim_ = confusion_matrix(y, y_).T / class_count self.Pte_cond_estim_ = self.getPteCondEstim(data.classes_, y, y_)
return self return self
@classmethod
def getPteCondEstim(cls, classes, y, y_):
# estimate the matrix with entry (i,j) being the estimate of P(yi|yj), that is, the probability that a
# document that belongs to yj ends up being classified as belonging to yi
conf = confusion_matrix(y, y_, labels=classes).T
conf = conf.astype(np.float)
class_counts = conf.sum(axis=0)
for i, _ in enumerate(classes):
if class_counts[i] == 0:
conf[i, i] = 1
else:
conf[:, i] /= class_counts[i]
return conf
def classify(self, data): def classify(self, data):
return self.cc.classify(data) return self.cc.classify(data)
@ -327,15 +258,7 @@ class ACC(AggregativeQuantifier):
@classmethod @classmethod
def solve_adjustment(cls, PteCondEstim, prevs_estim): def solve_adjustment(cls, PteCondEstim, prevs_estim):
""" # solve for the linear system Ax = B with A=PteCondEstim and B = prevs_estim
Solves the system linear system :math:`Ax = B` with :math:`A` = `PteCondEstim` and :math:`B` = `prevs_estim`
:param PteCondEstim: a `np.ndarray` of shape `(n_classes,n_classes,)` with entry `(i,j)` being the estimate
of :math:`P(y_i|y_j)`, that is, the probability that an instance that belongs to :math:`y_j` ends up being
classified as belonging to :math:`y_i`
:param prevs_estim: a `np.ndarray` of shape `(n_classes,)` with the class prevalence estimates
:return: an adjusted `np.ndarray` of shape `(n_classes,)` with the corrected class prevalence estimates
"""
A = PteCondEstim A = PteCondEstim
B = prevs_estim B = prevs_estim
try: try:
@ -348,18 +271,11 @@ class ACC(AggregativeQuantifier):
class PCC(AggregativeProbabilisticQuantifier): class PCC(AggregativeProbabilisticQuantifier):
"""
`Probabilistic Classify & Count <https://ieeexplore.ieee.org/abstract/document/5694031>`_,
the probabilistic variant of CC that relies on the posterior probabilities returned by a probabilistic classifier.
:param learner: a sklearn's Estimator that generates a classifier
"""
def __init__(self, learner: BaseEstimator): def __init__(self, learner: BaseEstimator):
self.learner = learner self.learner = learner
def fit(self, data: LabelledCollection, fit_learner=True): def fit(self, data: LabelledCollection, fit_learner=True):
self.learner, _ = _training_helper(self.learner, data, fit_learner, ensure_probabilistic=True) self.learner, _ = training_helper(self.learner, data, fit_learner, ensure_probabilistic=True)
return self return self
def aggregate(self, classif_posteriors): def aggregate(self, classif_posteriors):
@ -367,18 +283,6 @@ class PCC(AggregativeProbabilisticQuantifier):
class PACC(AggregativeProbabilisticQuantifier): class PACC(AggregativeProbabilisticQuantifier):
"""
`Probabilistic Adjusted Classify & Count <https://ieeexplore.ieee.org/abstract/document/5694031>`_,
the probabilistic variant of ACC that relies on the posterior probabilities returned by a probabilistic classifier.
:param learner: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, learner: BaseEstimator, val_split=0.4): def __init__(self, learner: BaseEstimator, val_split=0.4):
self.learner = learner self.learner = learner
@ -386,8 +290,7 @@ class PACC(AggregativeProbabilisticQuantifier):
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None): def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None):
""" """
Trains a PACC quantifier. Trains a PACC quantifier
:param data: the training set :param data: the training set
:param fit_learner: set to False to bypass the training (the learner is assumed to be already fit) :param fit_learner: set to False to bypass the training (the learner is assumed to be already fit)
:param val_split: either a float in (0,1) indicating the proportion of training instances to use for :param val_split: either a float in (0,1) indicating the proportion of training instances to use for
@ -410,7 +313,7 @@ class PACC(AggregativeProbabilisticQuantifier):
pbar.set_description(f'{self.__class__.__name__} fitting fold {k}') pbar.set_description(f'{self.__class__.__name__} fitting fold {k}')
training = data.sampling_from_index(training_idx) training = data.sampling_from_index(training_idx)
validation = data.sampling_from_index(validation_idx) validation = data.sampling_from_index(validation_idx)
learner, val_data = _training_helper( learner, val_data = training_helper(
self.learner, training, fit_learner, ensure_probabilistic=True, val_split=validation) self.learner, training, fit_learner, ensure_probabilistic=True, val_split=validation)
y_.append(learner.predict_proba(val_data.instances)) y_.append(learner.predict_proba(val_data.instances))
y.append(val_data.labels) y.append(val_data.labels)
@ -419,12 +322,12 @@ class PACC(AggregativeProbabilisticQuantifier):
y_ = np.vstack(y_) y_ = np.vstack(y_)
# fit the learner on all data # fit the learner on all data
self.learner, _ = _training_helper(self.learner, data, fit_learner, ensure_probabilistic=True, self.learner, _ = training_helper(self.learner, data, fit_learner, ensure_probabilistic=True,
val_split=None) val_split=None)
classes = data.classes_ classes = data.classes_
else: else:
self.learner, val_data = _training_helper( self.learner, val_data = training_helper(
self.learner, data, fit_learner, ensure_probabilistic=True, val_split=val_split) self.learner, data, fit_learner, ensure_probabilistic=True, val_split=val_split)
y_ = self.learner.predict_proba(val_data.instances) y_ = self.learner.predict_proba(val_data.instances)
y = val_data.labels y = val_data.labels
@ -432,16 +335,23 @@ class PACC(AggregativeProbabilisticQuantifier):
self.pcc = PCC(self.learner) self.pcc = PCC(self.learner)
self.Pte_cond_estim_ = self.getPteCondEstim(classes, y, y_)
return self
@classmethod
def getPteCondEstim(cls, classes, y, y_):
# estimate the matrix with entry (i,j) being the estimate of P(yi|yj), that is, the probability that a # estimate the matrix with entry (i,j) being the estimate of P(yi|yj), that is, the probability that a
# document that belongs to yj ends up being classified as belonging to yi # document that belongs to yj ends up being classified as belonging to yi
n_classes = len(classes) n_classes = len(classes)
confusion = np.empty(shape=(n_classes, n_classes)) # confusion = np.zeros(shape=(n_classes, n_classes))
confusion = np.eye(n_classes)
for i, class_ in enumerate(classes): for i, class_ in enumerate(classes):
confusion[i] = y_[y == class_].mean(axis=0) idx = y == class_
if idx.any():
confusion[i] = y_[idx].mean(axis=0)
self.Pte_cond_estim_ = confusion.T return confusion.T
return self
def aggregate(self, classif_posteriors): def aggregate(self, classif_posteriors):
prevs_estim = self.pcc.aggregate(classif_posteriors) prevs_estim = self.pcc.aggregate(classif_posteriors)
@ -453,13 +363,10 @@ class PACC(AggregativeProbabilisticQuantifier):
class EMQ(AggregativeProbabilisticQuantifier): class EMQ(AggregativeProbabilisticQuantifier):
""" """
`Expectation Maximization for Quantification <https://ieeexplore.ieee.org/abstract/document/6789744>`_ (EMQ), The method is described in:
aka `Saerens-Latinne-Decaestecker` (SLD) algorithm. Saerens, M., Latinne, P., and Decaestecker, C. (2002).
EMQ consists of using the well-known `Expectation Maximization algorithm` to iteratively update the posterior Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure.
probabilities generated by a probabilistic classifier and the class prevalence estimates obtained via Neural Computation, 14(1): 2141.
maximum-likelihood estimation, in a mutually recursive way, until convergence.
:param learner: a sklearn's Estimator that generates a classifier
""" """
MAX_ITER = 1000 MAX_ITER = 1000
@ -469,7 +376,7 @@ class EMQ(AggregativeProbabilisticQuantifier):
self.learner = learner self.learner = learner
def fit(self, data: LabelledCollection, fit_learner=True): def fit(self, data: LabelledCollection, fit_learner=True):
self.learner, _ = _training_helper(self.learner, data, fit_learner, ensure_probabilistic=True) self.learner, _ = training_helper(self.learner, data, fit_learner, ensure_probabilistic=True)
self.train_prevalence = F.prevalence_from_labels(data.labels, self.classes_) self.train_prevalence = F.prevalence_from_labels(data.labels, self.classes_)
return self return self
@ -484,17 +391,6 @@ class EMQ(AggregativeProbabilisticQuantifier):
@classmethod @classmethod
def EM(cls, tr_prev, posterior_probabilities, epsilon=EPSILON): def EM(cls, tr_prev, posterior_probabilities, epsilon=EPSILON):
"""
Computes the `Expectation Maximization` routine.
:param tr_prev: array-like, the training prevalence
:param posterior_probabilities: `np.ndarray` of shape `(n_instances, n_classes,)` with the
posterior probabilities
:param epsilon: float, the threshold different between two consecutive iterations
to reach before stopping the loop
:return: a tuple with the estimated prevalence values (shape `(n_classes,)`) and
the corrected posterior probabilities (shape `(n_instances, n_classes,)`)
"""
Px = posterior_probabilities Px = posterior_probabilities
Ptr = np.copy(tr_prev) Ptr = np.copy(tr_prev)
qs = np.copy(Ptr) # qs (the running estimate) is initialized as the training prevalence qs = np.copy(Ptr) # qs (the running estimate) is initialized as the training prevalence
@ -523,17 +419,9 @@ class EMQ(AggregativeProbabilisticQuantifier):
class HDy(AggregativeProbabilisticQuantifier, BinaryQuantifier): class HDy(AggregativeProbabilisticQuantifier, BinaryQuantifier):
""" """
`Hellinger Distance y <https://www.sciencedirect.com/science/article/pii/S0020025512004069>`_ (HDy). Implementation of the method based on the Hellinger Distance y (HDy) proposed by
HDy is a probabilistic method for training binary quantifiers, that models quantification as the problem of González-Castro, V., Alaiz-Rodrı́guez, R., and Alegre, E. (2013). Class distribution
minimizing the divergence (in terms of the Hellinger Distance) between two cumulative distributions of posterior estimation based on the Hellinger distance. Information Sciences, 218:146164.
probabilities returned by the classifier. One of the distributions is generated from the unlabelled examples and
the other is generated from a validation set. This latter distribution is defined as a mixture of the
class-conditional distributions of the posterior probabilities returned for the positive and negative validation
examples, respectively. The parameters of the mixture thus represent the estimates of the class prevalence values.
:param learner: a sklearn's Estimator that generates a binary classifier
:param val_split: a float in range (0,1) indicating the proportion of data to be used as a stratified held-out
validation distribution, or a :class:`quapy.data.base.LabelledCollection` (the split itself).
""" """
def __init__(self, learner: BaseEstimator, val_split=0.4): def __init__(self, learner: BaseEstimator, val_split=0.4):
@ -542,20 +430,19 @@ class HDy(AggregativeProbabilisticQuantifier, BinaryQuantifier):
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, LabelledCollection] = None): def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, LabelledCollection] = None):
""" """
Trains a HDy quantifier. Trains a HDy quantifier
:param data: the training set :param data: the training set
:param fit_learner: set to False to bypass the training (the learner is assumed to be already fit) :param fit_learner: set to False to bypass the training (the learner is assumed to be already fit)
:param val_split: either a float in (0,1) indicating the proportion of training instances to use for :param val_split: either a float in (0,1) indicating the proportion of training instances to use for
validation (e.g., 0.3 for using 30% of the training set as validation data), or a validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection
:class:`quapy.data.base.LabelledCollection` indicating the validation set itself indicating the validation set itself
:return: self :return: self
""" """
if val_split is None: if val_split is None:
val_split = self.val_split val_split = self.val_split
self._check_binary(data, self.__class__.__name__) self._check_binary(data, self.__class__.__name__)
self.learner, validation = _training_helper( self.learner, validation = training_helper(
self.learner, data, fit_learner, ensure_probabilistic=True, val_split=val_split) self.learner, data, fit_learner, ensure_probabilistic=True, val_split=val_split)
Px = self.posterior_probabilities(validation.instances)[:, 1] # takes only the P(y=+1|x) Px = self.posterior_probabilities(validation.instances)[:, 1] # takes only the P(y=+1|x)
self.Pxy1 = Px[validation.labels == self.learner.classes_[1]] self.Pxy1 = Px[validation.labels == self.learner.classes_[1]]
@ -586,7 +473,7 @@ class HDy(AggregativeProbabilisticQuantifier, BinaryQuantifier):
Px_test, _ = np.histogram(Px, bins=bins, range=(0, 1), density=True) Px_test, _ = np.histogram(Px, bins=bins, range=(0, 1), density=True)
prev_selected, min_dist = None, None prev_selected, min_dist = None, None
for prev in F.prevalence_linspace(n_prevalences=100, repeats=1, smooth_limits_epsilon=0.0): for prev in F.prevalence_linspace(n_prevalences=100, repeat=1, smooth_limits_epsilon=0.0):
Px_train = prev * Pxy1_density + (1 - prev) * Pxy0_density Px_train = prev * Pxy1_density + (1 - prev) * Pxy0_density
hdy = F.HellingerDistance(Px_train, Px_test) hdy = F.HellingerDistance(Px_train, Px_test)
if prev_selected is None or hdy < min_dist: if prev_selected is None or hdy < min_dist:
@ -598,19 +485,6 @@ class HDy(AggregativeProbabilisticQuantifier, BinaryQuantifier):
class ELM(AggregativeQuantifier, BinaryQuantifier): class ELM(AggregativeQuantifier, BinaryQuantifier):
"""
Class of Explicit Loss Minimization (ELM) quantifiers.
Quantifiers based on ELM represent a family of methods based on structured output learning;
these quantifiers rely on classifiers that have been optimized using a quantification-oriented loss
measure. This implementation relies on
`Joachims SVM perf <https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html>`_ structured output
learning algorithm, which has to be installed and patched for the purpose (see this
`script <https://github.com/HLT-ISTI/QuaPy/blob/master/prepare_svmperf.sh>`_).
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
:param loss: the loss to optimize (see :attr:`quapy.classification.svmperf.SVMperf.valid_losses`)
:param kwargs: rest of SVM perf's parameters
"""
def __init__(self, svmperf_base=None, loss='01', **kwargs): def __init__(self, svmperf_base=None, loss='01', **kwargs):
self.svmperf_base = svmperf_base if svmperf_base is not None else qp.environ['SVMPERF_HOME'] self.svmperf_base = svmperf_base if svmperf_base is not None else qp.environ['SVMPERF_HOME']
@ -633,15 +507,9 @@ class ELM(AggregativeQuantifier, BinaryQuantifier):
class SVMQ(ELM): class SVMQ(ELM):
""" """
SVM(Q), which attempts to minimize the `Q` loss combining a classification-oriented loss and a Barranquero, J., Díez, J., and del Coz, J. J. (2015).
quantification-oriented loss, as proposed by Quantification-oriented learning based on reliable classifiers.
`Barranquero et al. 2015 <https://www.sciencedirect.com/science/article/pii/S003132031400291X>`_. Pattern Recognition, 48(2):591604.
Equivalent to:
>>> ELM(svmperf_base, loss='q', **kwargs)
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
:param kwargs: rest of SVM perf's parameters
""" """
def __init__(self, svmperf_base=None, **kwargs): def __init__(self, svmperf_base=None, **kwargs):
@ -650,14 +518,9 @@ class SVMQ(ELM):
class SVMKLD(ELM): class SVMKLD(ELM):
""" """
SVM(KLD), which attempts to minimize the Kullback-Leibler Divergence as proposed by Esuli, A. and Sebastiani, F. (2015).
`Esuli et al. 2015 <https://dl.acm.org/doi/abs/10.1145/2700406>`_. Optimizing text quantifiers for multivariate loss functions.
Equivalent to: ACM Transactions on Knowledge Discovery and Data, 9(4):Article 27.
>>> ELM(svmperf_base, loss='kld', **kwargs)
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
:param kwargs: rest of SVM perf's parameters
""" """
def __init__(self, svmperf_base=None, **kwargs): def __init__(self, svmperf_base=None, **kwargs):
@ -666,15 +529,9 @@ class SVMKLD(ELM):
class SVMNKLD(ELM): class SVMNKLD(ELM):
""" """
SVM(NKLD), which attempts to minimize a version of the the Kullback-Leibler Divergence normalized Esuli, A. and Sebastiani, F. (2015).
via the logistic function, as proposed by Optimizing text quantifiers for multivariate loss functions.
`Esuli et al. 2015 <https://dl.acm.org/doi/abs/10.1145/2700406>`_. ACM Transactions on Knowledge Discovery and Data, 9(4):Article 27.
Equivalent to:
>>> ELM(svmperf_base, loss='nkld', **kwargs)
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
:param kwargs: rest of SVM perf's parameters
""" """
def __init__(self, svmperf_base=None, **kwargs): def __init__(self, svmperf_base=None, **kwargs):
@ -682,60 +539,25 @@ class SVMNKLD(ELM):
class SVMAE(ELM): class SVMAE(ELM):
"""
SVM(AE), which attempts to minimize Absolute Error as first used by
`Moreo and Sebastiani, 2021 <https://arxiv.org/abs/2011.02552>`_.
Equivalent to:
>>> ELM(svmperf_base, loss='mae', **kwargs)
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
:param kwargs: rest of SVM perf's parameters
"""
def __init__(self, svmperf_base=None, **kwargs): def __init__(self, svmperf_base=None, **kwargs):
super(SVMAE, self).__init__(svmperf_base, loss='mae', **kwargs) super(SVMAE, self).__init__(svmperf_base, loss='mae', **kwargs)
class SVMRAE(ELM): class SVMRAE(ELM):
"""
SVM(RAE), which attempts to minimize Relative Absolute Error as first used by
`Moreo and Sebastiani, 2021 <https://arxiv.org/abs/2011.02552>`_.
Equivalent to:
>>> ELM(svmperf_base, loss='mrae', **kwargs)
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
:param kwargs: rest of SVM perf's parameters
"""
def __init__(self, svmperf_base=None, **kwargs): def __init__(self, svmperf_base=None, **kwargs):
super(SVMRAE, self).__init__(svmperf_base, loss='mrae', **kwargs) super(SVMRAE, self).__init__(svmperf_base, loss='mrae', **kwargs)
class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier): class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
"""
Abstract class of Threshold Optimization variants for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_.
The goal is to bring improved stability to the denominator of the adjustment.
The different variants are based on different heuristics for choosing a decision threshold
that would allow for more true positives and many more false positives, on the grounds this
would deliver larger denominators.
:param learner: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, learner: BaseEstimator, val_split=0.4): def __init__(self, learner: BaseEstimator, val_split=0.4):
self.learner = learner self.learner = learner
self.val_split = val_split self.val_split = val_split
@abstractmethod
def optimize_threshold(self, y, probabilities):
...
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None): def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None):
self._check_binary(data, "Threshold Optimization") self._check_binary(data, "Threshold Optimization")
@ -752,7 +574,7 @@ class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
pbar.set_description(f'{self.__class__.__name__} fitting fold {k}') pbar.set_description(f'{self.__class__.__name__} fitting fold {k}')
training = data.sampling_from_index(training_idx) training = data.sampling_from_index(training_idx)
validation = data.sampling_from_index(validation_idx) validation = data.sampling_from_index(validation_idx)
learner, val_data = _training_helper(self.learner, training, fit_learner, val_split=validation) learner, val_data = training_helper(self.learner, training, fit_learner, val_split=validation)
probabilities.append(learner.predict_proba(val_data.instances)) probabilities.append(learner.predict_proba(val_data.instances))
y.append(val_data.labels) y.append(val_data.labels)
@ -760,16 +582,16 @@ class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
probabilities = np.concatenate(probabilities) probabilities = np.concatenate(probabilities)
# fit the learner on all data # fit the learner on all data
self.learner, _ = _training_helper(self.learner, data, fit_learner, val_split=None) self.learner, _ = training_helper(self.learner, data, fit_learner, val_split=None)
else: else:
self.learner, val_data = _training_helper(self.learner, data, fit_learner, val_split=val_split) self.learner, val_data = training_helper(self.learner, data, fit_learner, val_split=val_split)
probabilities = self.learner.predict_proba(val_data.instances) probabilities = self.learner.predict_proba(val_data.instances)
y = val_data.labels y = val_data.labels
self.cc = CC(self.learner) self.cc = CC(self.learner)
self.tpr, self.fpr = self._optimize_threshold(y, probabilities) self.tpr, self.fpr = self.optimize_threshold(y, probabilities)
return self return self
@ -777,32 +599,20 @@ class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
def _condition(self, tpr, fpr) -> float: def _condition(self, tpr, fpr) -> float:
""" """
Implements the criterion according to which the threshold should be selected. Implements the criterion according to which the threshold should be selected.
This function should return the (float) score to be minimized. This function should return a (float) score to be minimized.
:param tpr: float, true positive rate
:param fpr: float, false positive rate
:return: float, a score for the given `tpr` and `fpr`
""" """
... ...
def _optimize_threshold(self, y, probabilities): def optimize_threshold(self, y, probabilities):
"""
Seeks for the best `tpr` and `fpr` according to the score obtained at different
decision thresholds. The scoring function is implemented in function `_condition`.
:param y: predicted labels for the validation set (or for the training set via `k`-fold cross validation)
:param probabilities: array-like with the posterior probabilities
:return: best `tpr` and `fpr` according to `_condition`
"""
best_candidate_threshold_score = None best_candidate_threshold_score = None
best_tpr = 0 best_tpr = 0
best_fpr = 0 best_fpr = 0
candidate_thresholds = np.unique(probabilities[:, 1]) candidate_thresholds = np.unique(probabilities[:, 1])
for candidate_threshold in candidate_thresholds: for candidate_threshold in candidate_thresholds:
y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]] y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]]
TP, FP, FN, TN = self._compute_table(y, y_) TP, FP, FN, TN = self.compute_table(y, y_)
tpr = self._compute_tpr(TP, FP) tpr = self.compute_tpr(TP, FP)
fpr = self._compute_fpr(FP, TN) fpr = self.compute_fpr(FP, TN)
condition_score = self._condition(tpr, fpr) condition_score = self._condition(tpr, fpr)
if best_candidate_threshold_score is None or condition_score < best_candidate_threshold_score: if best_candidate_threshold_score is None or condition_score < best_candidate_threshold_score:
best_candidate_threshold_score = condition_score best_candidate_threshold_score = condition_score
@ -819,40 +629,25 @@ class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
adjusted_prevs_estim = np.array((1 - adjusted_prevs_estim, adjusted_prevs_estim)) adjusted_prevs_estim = np.array((1 - adjusted_prevs_estim, adjusted_prevs_estim))
return adjusted_prevs_estim return adjusted_prevs_estim
def _compute_table(self, y, y_): def compute_table(self, y, y_):
TP = np.logical_and(y == y_, y == self.classes_[1]).sum() TP = np.logical_and(y == y_, y == self.classes_[1]).sum()
FP = np.logical_and(y != y_, y == self.classes_[0]).sum() FP = np.logical_and(y != y_, y == self.classes_[0]).sum()
FN = np.logical_and(y != y_, y == self.classes_[1]).sum() FN = np.logical_and(y != y_, y == self.classes_[1]).sum()
TN = np.logical_and(y == y_, y == self.classes_[0]).sum() TN = np.logical_and(y == y_, y == self.classes_[0]).sum()
return TP, FP, FN, TN return TP, FP, FN, TN
def _compute_tpr(self, TP, FP): def compute_tpr(self, TP, FP):
if TP + FP == 0: if TP + FP == 0:
return 0 return 0
return TP / (TP + FP) return TP / (TP + FP)
def _compute_fpr(self, FP, TN): def compute_fpr(self, FP, TN):
if FP + TN == 0: if FP + TN == 0:
return 0 return 0
return FP / (FP + TN) return FP / (FP + TN)
class T50(ThresholdOptimization): class T50(ThresholdOptimization):
"""
Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that looks
for the threshold that makes `tpr` cosest to 0.5.
The goal is to bring improved stability to the denominator of the adjustment.
:param learner: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, learner: BaseEstimator, val_split=0.4): def __init__(self, learner: BaseEstimator, val_split=0.4):
super().__init__(learner, val_split) super().__init__(learner, val_split)
@ -862,21 +657,6 @@ class T50(ThresholdOptimization):
class MAX(ThresholdOptimization): class MAX(ThresholdOptimization):
"""
Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that looks
for the threshold that maximizes `tpr-fpr`.
The goal is to bring improved stability to the denominator of the adjustment.
:param learner: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, learner: BaseEstimator, val_split=0.4): def __init__(self, learner: BaseEstimator, val_split=0.4):
super().__init__(learner, val_split) super().__init__(learner, val_split)
@ -887,21 +667,6 @@ class MAX(ThresholdOptimization):
class X(ThresholdOptimization): class X(ThresholdOptimization):
"""
Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that looks
for the threshold that yields `tpr=1-fpr`.
The goal is to bring improved stability to the denominator of the adjustment.
:param learner: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, learner: BaseEstimator, val_split=0.4): def __init__(self, learner: BaseEstimator, val_split=0.4):
super().__init__(learner, val_split) super().__init__(learner, val_split)
@ -911,70 +676,41 @@ class X(ThresholdOptimization):
class MS(ThresholdOptimization): class MS(ThresholdOptimization):
"""
Median Sweep. Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that generates
class prevalence estimates for all decision thresholds and returns the median of them all.
The goal is to bring improved stability to the denominator of the adjustment.
:param learner: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, learner: BaseEstimator, val_split=0.4): def __init__(self, learner: BaseEstimator, val_split=0.4):
super().__init__(learner, val_split) super().__init__(learner, val_split)
def _condition(self, tpr, fpr) -> float: def _condition(self, tpr, fpr) -> float:
pass pass
def _optimize_threshold(self, y, probabilities): def optimize_threshold(self, y, probabilities):
tprs = [] tprs = []
fprs = [] fprs = []
candidate_thresholds = np.unique(probabilities[:, 1]) candidate_thresholds = np.unique(probabilities[:, 1])
for candidate_threshold in candidate_thresholds: for candidate_threshold in candidate_thresholds:
y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]] y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]]
TP, FP, FN, TN = self._compute_table(y, y_) TP, FP, FN, TN = self.compute_table(y, y_)
tpr = self._compute_tpr(TP, FP) tpr = self.compute_tpr(TP, FP)
fpr = self._compute_fpr(FP, TN) fpr = self.compute_fpr(FP, TN)
tprs.append(tpr) tprs.append(tpr)
fprs.append(fpr) fprs.append(fpr)
return np.median(tprs), np.median(fprs) return np.median(tprs), np.median(fprs)
class MS2(MS): class MS2(MS):
"""
Median Sweep 2. Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that generates
class prevalence estimates for all decision thresholds and returns the median of for cases in
which `tpr-fpr>0.25`
The goal is to bring improved stability to the denominator of the adjustment.
:param learner: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, learner: BaseEstimator, val_split=0.4): def __init__(self, learner: BaseEstimator, val_split=0.4):
super().__init__(learner, val_split) super().__init__(learner, val_split)
def _optimize_threshold(self, y, probabilities): def optimize_threshold(self, y, probabilities):
tprs = [0, 1] tprs = [0, 1]
fprs = [0, 1] fprs = [0, 1]
candidate_thresholds = np.unique(probabilities[:, 1]) candidate_thresholds = np.unique(probabilities[:, 1])
for candidate_threshold in candidate_thresholds: for candidate_threshold in candidate_thresholds:
y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]] y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]]
TP, FP, FN, TN = self._compute_table(y, y_) TP, FP, FN, TN = self.compute_table(y, y_)
tpr = self._compute_tpr(TP, FP) tpr = self.compute_tpr(TP, FP)
fpr = self._compute_fpr(FP, TN) fpr = self.compute_fpr(FP, TN)
if (tpr - fpr) > 0.25: if (tpr - fpr) > 0.25:
tprs.append(tpr) tprs.append(tpr)
fprs.append(fpr) fprs.append(fpr)
@ -986,7 +722,6 @@ AdjustedClassifyAndCount = ACC
ProbabilisticClassifyAndCount = PCC ProbabilisticClassifyAndCount = PCC
ProbabilisticAdjustedClassifyAndCount = PACC ProbabilisticAdjustedClassifyAndCount = PACC
ExpectationMaximizationQuantifier = EMQ ExpectationMaximizationQuantifier = EMQ
SLD = EMQ
HellingerDistanceY = HDy HellingerDistanceY = HDy
ExplicitLossMinimisation = ELM ExplicitLossMinimisation = ELM
MedianSweep = MS MedianSweep = MS
@ -995,14 +730,11 @@ MedianSweep2 = MS2
class OneVsAll(AggregativeQuantifier): class OneVsAll(AggregativeQuantifier):
""" """
Allows any binary quantifier to perform quantification on single-label datasets. Allows any binary quantifier to perform quantification on single-label datasets. The method maintains one binary
The method maintains one binary quantifier for each class, and then l1-normalizes the outputs so that the quantifier for each class, and then l1-normalizes the outputs so that the class prevelences sum up to 1.
class prevelences sum up to 1. This variant was used, along with the ExplicitLossMinimization quantifier in
This variant was used, along with the :class:`EMQ` quantifier, in Gao, W., Sebastiani, F.: From classification to quantification in tweet sentiment analysis.
`Gao and Sebastiani, 2016 <https://link.springer.com/content/pdf/10.1007/s13278-016-0327-z.pdf>`_. Social Network Analysis and Mining 6(19), 122 (2016)
:param learner: a sklearn's Estimator that generates a binary classifier
:param n_jobs: number of parallel workers
""" """
def __init__(self, binary_quantifier, n_jobs=-1): def __init__(self, binary_quantifier, n_jobs=-1):
@ -1021,30 +753,18 @@ class OneVsAll(AggregativeQuantifier):
return self return self
def classify(self, instances): def classify(self, instances):
""" # returns a matrix of shape (n,m) with n the number of instances and m the number of classes. The entry
Returns a matrix of shape `(n,m,)` with `n` the number of instances and `m` the number of classes. The entry # (i,j) is a binary value indicating whether instance i belongs to class j. The binary classifications are
`(i,j)` is a binary value indicating whether instance `i `belongs to class `j`. The binary classifications are # independent of each other, meaning that an instance can end up be attributed to 0, 1, or more classes.
independent of each other, meaning that an instance can end up be attributed to 0, 1, or more classes.
:param instances: array-like
:return: `np.ndarray`
"""
classif_predictions_bin = self.__parallel(self._delayed_binary_classification, instances) classif_predictions_bin = self.__parallel(self._delayed_binary_classification, instances)
return classif_predictions_bin.T return classif_predictions_bin.T
def posterior_probabilities(self, instances): def posterior_probabilities(self, instances):
""" # returns a matrix of shape (n,m,2) with n the number of instances and m the number of classes. The entry
Returns a matrix of shape `(n,m,2)` with `n` the number of instances and `m` the number of classes. The entry # (i,j,1) (resp. (i,j,0)) is a value in [0,1] indicating the posterior probability that instance i belongs
`(i,j,1)` (resp. `(i,j,0)`) is a value in [0,1] indicating the posterior probability that instance `i` belongs # (resp. does not belong) to class j.
(resp. does not belong) to class `j`. # The posterior probabilities are independent of each other, meaning that, in general, they do not sum
The posterior probabilities are independent of each other, meaning that, in general, they do not sum # up to one.
up to one.
:param instances: array-like
:return: `np.ndarray`
"""
if not self.binary_quantifier.probabilistic: if not self.binary_quantifier.probabilistic:
raise NotImplementedError(f'{self.__class__.__name__} does not implement posterior_probabilities because ' raise NotImplementedError(f'{self.__class__.__name__} does not implement posterior_probabilities because '
f'the base quantifier {self.binary_quantifier.__class__.__name__} is not ' f'the base quantifier {self.binary_quantifier.__class__.__name__} is not '
@ -1091,7 +811,7 @@ class OneVsAll(AggregativeQuantifier):
return self.binary_quantifier.get_params() return self.binary_quantifier.get_params()
def _delayed_binary_classification(self, c, X): def _delayed_binary_classification(self, c, X):
return self.dict_binary_quantifiers[c].classify(X) return self.dict_binary_quantifiers[c].preclassify(X)
def _delayed_binary_posteriors(self, c, X): def _delayed_binary_posteriors(self, c, X):
return self.dict_binary_quantifiers[c].posterior_probabilities(X) return self.dict_binary_quantifiers[c].posterior_probabilities(X)
@ -1106,19 +826,8 @@ class OneVsAll(AggregativeQuantifier):
@property @property
def binary(self): def binary(self):
"""
Informs that the classifier is not binary
:return: False
"""
return False return False
@property @property
def probabilistic(self): def probabilistic(self):
"""
Indicates if the classifier is probabilistic or not (depending on the nature of the base classifier).
:return: boolean
"""
return self.binary_quantifier.probabilistic return self.binary_quantifier.probabilistic