Compare commits
21 Commits
master
...
localstack
|
|
@ -0,0 +1,3 @@
|
|||
[submodule "result_table"]
|
||||
path = result_table
|
||||
url = gitea@gitea-s2i2s.isti.cnr.it:moreo/result_table.git
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
|
||||
DEBUG = False
|
||||
|
|
@ -0,0 +1,124 @@
|
|||
import os
|
||||
import pickle
|
||||
import shutil
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from os.path import join
|
||||
import quapy as qp
|
||||
from quapy.method.aggregative import KDEyML
|
||||
from quapy.protocol import UPP
|
||||
from kdey_devel import KDEyMLauto
|
||||
from utils import *
|
||||
from constants import *
|
||||
import quapy.functional as F
|
||||
|
||||
|
||||
qp.environ["SAMPLE_SIZE"] = 100 if DEBUG else 500
|
||||
val_repeats = 100 if DEBUG else 500
|
||||
test_repeats = 100 if DEBUG else 500
|
||||
if DEBUG:
|
||||
qp.environ["DEFAULT_CLS"] = LogisticRegression()
|
||||
|
||||
test_results = {}
|
||||
val_choice = {}
|
||||
|
||||
bandwidth_range = np.linspace(0.01, 0.20, 20)
|
||||
if DEBUG:
|
||||
bandwidth_range = np.linspace(0.01, 0.20, 5)
|
||||
|
||||
|
||||
def datasets():
|
||||
dataset_list = qp.datasets.UCI_MULTICLASS_DATASETS[:4]
|
||||
if DEBUG:
|
||||
dataset_list = dataset_list[:4]
|
||||
for dataset_name in dataset_list:
|
||||
dataset = qp.datasets.fetch_UCIMulticlassDataset(dataset_name)
|
||||
if DEBUG:
|
||||
dataset = dataset.reduce(random_state=0)
|
||||
yield dataset
|
||||
|
||||
|
||||
@measuretime
|
||||
def predict_b_modsel(dataset):
|
||||
# bandwidth chosen during model selection in validation
|
||||
train = dataset.training
|
||||
train_tr, train_va = train.split_stratified(random_state=0)
|
||||
kdey = KDEyML(random_state=0)
|
||||
modsel = qp.model_selection.GridSearchQ(
|
||||
model=kdey,
|
||||
param_grid={'bandwidth': bandwidth_range},
|
||||
protocol=UPP(train_va, repeats=val_repeats),
|
||||
refit=False,
|
||||
n_jobs=-1,
|
||||
verbose=True
|
||||
).fit(train_tr)
|
||||
chosen_bandwidth = modsel.best_params_['bandwidth']
|
||||
modsel_choice = float(chosen_bandwidth)
|
||||
# kdey.set_params(bandwidth=chosen_bandwidth)
|
||||
# kdey.fit(train)
|
||||
# kdey.qua
|
||||
return modsel_choice
|
||||
|
||||
@measuretime
|
||||
def predict_b_kdeymlauto(dataset):
|
||||
# bandwidth chosen during model selection in validation
|
||||
train, test = dataset.train_test
|
||||
kdey = KDEyMLauto(random_state=0)
|
||||
print(f'true-prevalence: {F.strprev(test.prevalence())}')
|
||||
chosen_bandwidth, _ = kdey.chose_bandwidth(train, test.X)
|
||||
auto_bandwidth = float(chosen_bandwidth)
|
||||
return auto_bandwidth
|
||||
|
||||
|
||||
def in_test_search(dataset, n_jobs=-1):
|
||||
train, test = dataset.train_test
|
||||
|
||||
print(f"generating true tests scores using KDEy in {dataset.name}")
|
||||
|
||||
def experiment_job(bandwidth):
|
||||
kdey = KDEyML(bandwidth=bandwidth, random_state=0)
|
||||
kdey.fit(train)
|
||||
test_gen = UPP(test, repeats=test_repeats)
|
||||
mae = qp.evaluation.evaluate(kdey, protocol=test_gen, error_metric='mae', verbose=True)
|
||||
print(f'{bandwidth=}: {mae:.5f}')
|
||||
return float(mae)
|
||||
|
||||
dataset_results = qp.util.parallel(experiment_job, bandwidth_range, n_jobs=n_jobs)
|
||||
return dataset_results, bandwidth_range
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
for dataset in datasets():
|
||||
print('NAME', dataset.name)
|
||||
print(len(dataset.training))
|
||||
print(len(dataset.test))
|
||||
|
||||
result_path = f'./results/{dataset.name}/'
|
||||
if DEBUG:
|
||||
result_path = result_path.replace('results', 'results_debug')
|
||||
if os.path.exists(result_path):
|
||||
shutil.rmtree(result_path)
|
||||
|
||||
dataset_results, bandwidth_range = qp.util.pickled_resource(join(result_path, 'test.pkl'), in_test_search, dataset)
|
||||
|
||||
triplet_list_results = []
|
||||
modsel_choice, modsel_time = qp.util.pickled_resource(join(result_path, 'modsel.pkl'), predict_b_modsel, dataset)
|
||||
triplet_list_results.append(('modsel', modsel_choice, modsel_time,))
|
||||
auto_choice, auto_time = qp.util.pickled_resource(join(result_path, 'auto.pkl'), predict_b_kdeymlauto, dataset)
|
||||
triplet_list_results.append(('auto', auto_choice, auto_time,))
|
||||
|
||||
print(f'Dataset = {dataset.name}')
|
||||
print(modsel_choice)
|
||||
print(dataset_results)
|
||||
|
||||
plot_bandwidth(dataset.name, dataset_results, bandwidth_range, triplet_list_results)
|
||||
error_table(dataset.name, dataset_results, bandwidth_range, triplet_list_results)
|
||||
# time_table(dataset.name, dataset_results, bandwidth_range, triplet_list_results)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,386 @@
|
|||
from typing import Union, Callable
|
||||
import numpy as np
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.neighbors import KernelDensity
|
||||
|
||||
import quapy as qp
|
||||
from quapy.protocol import UPP
|
||||
from quapy.method._kdey import KDEBase
|
||||
from quapy.data import LabelledCollection
|
||||
from quapy.method.aggregative import AggregativeSoftQuantifier, KDEyML
|
||||
import quapy.functional as F
|
||||
|
||||
from sklearn.metrics.pairwise import rbf_kernel
|
||||
from scipy import optimize
|
||||
from tqdm import tqdm
|
||||
import quapy.functional as F
|
||||
|
||||
epsilon = 1e-10
|
||||
|
||||
class KDEyMLauto(KDEyML):
|
||||
def __init__(self, classifier: BaseEstimator = None, val_split=5, random_state=None, optim='two_steps'):
|
||||
self.classifier = qp._get_classifier(classifier)
|
||||
self.val_split = val_split
|
||||
self.bandwidth = None
|
||||
self.random_state = random_state
|
||||
self.optim = optim
|
||||
|
||||
def chose_bandwidth(self, train, test_instances):
|
||||
classif_predictions = self.classifier_fit_predict(train, fit_classifier=True, predict_on=self.val_split)
|
||||
te_posteriors = self.classify(test_instances)
|
||||
return self.transduce(classif_predictions, te_posteriors)
|
||||
|
||||
def transduce(self, classif_predictions, te_posteriors):
|
||||
tr_posteriors, tr_y = classif_predictions.Xy
|
||||
classes = classif_predictions.classes_
|
||||
n_classes = len(classes)
|
||||
|
||||
current_bandwidth = 0.05
|
||||
if self.optim == 'both_fine':
|
||||
current_bandwidth = np.full(fill_value=current_bandwidth, shape=(n_classes,))
|
||||
current_prevalence = np.full(fill_value=1 / n_classes, shape=(n_classes,))
|
||||
|
||||
if self.optim == 'max_likelihood':
|
||||
current_prevalence, current_bandwidth = self.optim_minimize_like(tr_posteriors, tr_y, te_posteriors, classes, grid=True)
|
||||
elif self.optim == 'max_likelihood2':
|
||||
current_prevalence, current_bandwidth = self.optim_minimize_like(tr_posteriors, tr_y, te_posteriors, classes, grid=False)
|
||||
else:
|
||||
|
||||
iterations = 0
|
||||
convergence = False
|
||||
with qp.util.temp_seed(self.random_state):
|
||||
|
||||
while not convergence:
|
||||
previous_bandwidth = current_bandwidth
|
||||
previous_prevalence = current_prevalence
|
||||
|
||||
iterations += 1
|
||||
print(f'{iterations}:')
|
||||
|
||||
if self.optim == 'two_steps':
|
||||
current_prevalence = self.optim_minimize_prevalence(current_bandwidth, current_prevalence, tr_posteriors, tr_y, te_posteriors, classes)
|
||||
print(f'\testim-prev={F.strprev(current_prevalence)}')
|
||||
current_bandwidth = self.optim_minimize_bandwidth(current_bandwidth, current_prevalence, tr_posteriors, tr_y, te_posteriors, classes)
|
||||
print(f'\tbandwidth={current_bandwidth}')
|
||||
elif self.optim == 'both':
|
||||
current_prevalence, current_bandwidth = self.optim_minimize_both(current_bandwidth, current_prevalence, tr_posteriors, tr_y, te_posteriors, classes)
|
||||
elif self.optim == 'both_fine':
|
||||
current_prevalence, current_bandwidth = self.optim_minimize_both_fine(current_bandwidth, current_prevalence, tr_posteriors, tr_y, te_posteriors, classes)
|
||||
|
||||
# check converngece
|
||||
prev_convergence = all(np.isclose(previous_prevalence, current_prevalence, atol=0.01))
|
||||
if isinstance(current_bandwidth, float):
|
||||
band_convergence = np.isclose(previous_bandwidth, current_bandwidth, atol=0.001)
|
||||
else:
|
||||
band_convergence = all(np.isclose(previous_bandwidth, current_bandwidth, atol=0.001))
|
||||
|
||||
convergence = band_convergence and prev_convergence
|
||||
|
||||
self.bandwidth = current_bandwidth
|
||||
print('bandwidth=', current_bandwidth)
|
||||
print('prevalence=', current_prevalence)
|
||||
return current_prevalence
|
||||
|
||||
def optim_minimize_prevalence(self, current_bandwidth, current_prev, tr_posteriors, tr_y, te_posteriors, classes):
|
||||
mix_densities = self.get_mixture_components(tr_posteriors, tr_y, classes, current_bandwidth)
|
||||
test_densities = [self.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
|
||||
|
||||
def neg_loglikelihood_prev(prev):
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
return -np.sum(test_loglikelihood)
|
||||
|
||||
return optim_minimize(neg_loglikelihood_prev, current_prev)
|
||||
|
||||
def optim_minimize_bandwidth(self, current_bandwidth, current_prev, tr_posteriors, tr_y, te_posteriors, classes):
|
||||
def neg_loglikelihood_bandwidth(bandwidth):
|
||||
# bandwidth = bandwidth[0]
|
||||
mix_densities = self.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth)
|
||||
test_densities = [self.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(current_prev, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
nll = -np.sum(test_loglikelihood)
|
||||
# print(f'\t{bandwidth=:.10f}\t{nll=:.10f}')
|
||||
return nll
|
||||
|
||||
# bounds = [(0.00001, 0.2)]
|
||||
# r = optimize.minimize(neg_loglikelihood_bandwidth, x0=[current_bandwidth], method='SLSQP', bounds=bounds)
|
||||
r = optimize.minimize_scalar(neg_loglikelihood_bandwidth, bounds=(0.00001, 0.2))
|
||||
# print(f'iterations-bandwidth={r.nit}')
|
||||
assert r.success, f'Process did not converge! {r.message}'
|
||||
return r.x
|
||||
|
||||
def optim_minimize_both(self, current_bandwidth, current_prev, tr_posteriors, tr_y, te_posteriors, classes):
|
||||
n_classes = len(current_prev)
|
||||
def neg_loglikelihood_bandwidth(prevalence_bandwidth):
|
||||
bandwidth = prevalence_bandwidth[-1]
|
||||
prevalence = prevalence_bandwidth[:-1]
|
||||
mix_densities = self.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth)
|
||||
test_densities = [self.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prevalence, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
return -np.sum(test_loglikelihood)
|
||||
|
||||
bounds = [(0, 1) for _ in range(n_classes)] + [(0.00001, 0.2)]
|
||||
constraints = ({'type': 'eq', 'fun': lambda x: 1 - sum(x[:n_classes])})
|
||||
prevalence_bandwidth = np.append(current_prev, current_bandwidth)
|
||||
r = optimize.minimize(neg_loglikelihood_bandwidth, x0=prevalence_bandwidth, method='SLSQP', bounds=bounds, constraints=constraints)
|
||||
print(f'iterations-both={r.nit}')
|
||||
assert r.success, 'Process did not converge!'
|
||||
prev_band = r.x
|
||||
current_prevalence = prev_band[:-1]
|
||||
current_bandwidth = prev_band[-1]
|
||||
return current_prevalence, current_bandwidth
|
||||
|
||||
def optim_minimize_both_fine(self, current_bandwidth, current_prev, tr_posteriors, tr_y, te_posteriors, classes):
|
||||
n_classes = len(current_bandwidth)
|
||||
def neg_loglikelihood_bandwidth(prevalence_bandwidth):
|
||||
prevalence = prevalence_bandwidth[:n_classes]
|
||||
bandwidth = prevalence_bandwidth[n_classes:]
|
||||
mix_densities = self.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth)
|
||||
test_densities = [self.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prevalence, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
return -np.sum(test_loglikelihood)
|
||||
|
||||
bounds = [(0, 1) for _ in range(n_classes)] + [(0.00001, 1) for _ in range(n_classes)]
|
||||
constraints = ({'type': 'eq', 'fun': lambda x: 1 - sum(x[:n_classes])})
|
||||
prevalence_bandwidth = np.concatenate((current_prev, current_bandwidth))
|
||||
r = optimize.minimize(neg_loglikelihood_bandwidth, x0=prevalence_bandwidth, method='SLSQP', bounds=bounds, constraints=constraints)
|
||||
print(f'iterations-both-fine={r.nit}')
|
||||
assert r.success, 'Process did not converge!'
|
||||
prev_band = r.x
|
||||
current_prevalence = prev_band[:n_classes]
|
||||
current_bandwidth = prev_band[n_classes:]
|
||||
return current_prevalence, current_bandwidth
|
||||
|
||||
def optim_minimize_like(self, tr_posteriors, tr_y, te_posteriors, classes, reduction=100, grid=True):
|
||||
n_classes = len(classes)
|
||||
|
||||
# reduce samples to speed up computation
|
||||
posteriors_subsample = LabelledCollection(tr_posteriors, tr_y)
|
||||
posteriors_subsample = posteriors_subsample.sampling(reduction*n_classes)
|
||||
n_test = te_posteriors.shape[0]
|
||||
subsample_index = np.random.choice(np.arange(n_test), size=reduction)
|
||||
te_posterior_subsample = te_posteriors[subsample_index]
|
||||
|
||||
if grid:
|
||||
_, best_band = self.choose_bandwidth_maxlikelihood_grid(*posteriors_subsample.Xy, te_posterior_subsample, classes)
|
||||
else:
|
||||
best_band = self.choose_bandwidth_maxlikelihood_search(*posteriors_subsample.Xy, te_posterior_subsample, classes)
|
||||
|
||||
mix_densities = self.get_mixture_components(tr_posteriors, tr_y, classes, best_band)
|
||||
test_densities = [self.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
|
||||
|
||||
def neg_loglikelihood_prev(prev):
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
return -np.sum(test_loglikelihood)
|
||||
|
||||
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
|
||||
pred_prev, neglikelihood = optim_minimize(neg_loglikelihood_prev, init_prev, return_loss=True)
|
||||
|
||||
return pred_prev, best_band
|
||||
|
||||
|
||||
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
|
||||
self.classif_predictions = classif_predictions
|
||||
return self
|
||||
|
||||
def aggregate(self, posteriors: np.ndarray):
|
||||
return self.transduce(self.classif_predictions, posteriors)
|
||||
|
||||
def choose_bandwidth_maxlikelihood_grid(self, tr_posteriors, tr_y, te_posteriors, classes):
|
||||
n_classes = len(classes)
|
||||
best_band = None
|
||||
best_like = None
|
||||
best_prev = None
|
||||
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
|
||||
for bandwidth in np.logspace(-4, 0.5, 50):
|
||||
mix_densities = self.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth)
|
||||
test_densities = [self.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
|
||||
|
||||
def neg_loglikelihood_prev(prev):
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
return -np.sum(test_loglikelihood)
|
||||
|
||||
pred_prev, neglikelihood = optim_minimize(neg_loglikelihood_prev, init_prev, return_loss=True)
|
||||
|
||||
if best_like is None or neglikelihood < best_like:
|
||||
best_like = neglikelihood
|
||||
best_band = bandwidth
|
||||
best_prev = pred_prev
|
||||
|
||||
print(f'best-like={best_like:.4f}')
|
||||
print(f'best-band={best_band:.4f}')
|
||||
return best_prev, best_band
|
||||
|
||||
def choose_bandwidth_maxlikelihood_search(self, tr_posteriors, tr_y, te_posteriors, classes):
|
||||
n_classes = len(classes)
|
||||
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
|
||||
|
||||
def neglikelihood_band(bandwidth):
|
||||
mix_densities = self.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth[0])
|
||||
test_densities = [self.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
|
||||
|
||||
def neg_loglikelihood_prev(prev):
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
return -np.sum(test_loglikelihood)
|
||||
|
||||
pred_prev, neglikelihood = optim_minimize(neg_loglikelihood_prev, init_prev, return_loss=True)
|
||||
|
||||
return neglikelihood
|
||||
|
||||
bounds = [(0.0001, 0.2)]
|
||||
r = optimize.minimize(neglikelihood_band, x0=[0.001], method='SLSQP', bounds=bounds)
|
||||
|
||||
best_band = r.x[0]
|
||||
assert r.success, 'Process did not converge!'
|
||||
print(f'solved in nit={r.nit}')
|
||||
return best_band
|
||||
|
||||
|
||||
def optim_minimize(loss: Callable, init_prev: np.ndarray, return_loss=False):
|
||||
"""
|
||||
Searches for the optimal prevalence values, i.e., an `n_classes`-dimensional vector of the (`n_classes`-1)-simplex
|
||||
that yields the smallest lost. This optimization is carried out by means of a constrained search using scipy's
|
||||
SLSQP routine.
|
||||
|
||||
:param loss: (callable) the function to minimize
|
||||
:return: (ndarray) the best prevalence vector found
|
||||
"""
|
||||
|
||||
n_classes = len(init_prev)
|
||||
# solutions are bounded to those contained in the unit-simplex
|
||||
bounds = tuple((0, 1) for _ in range(n_classes)) # values in [0,1]
|
||||
constraints = ({'type': 'eq', 'fun': lambda x: 1 - sum(x)}) # values summing up to 1
|
||||
r = optimize.minimize(loss, x0=init_prev, method='SLSQP', bounds=bounds, constraints=constraints)
|
||||
# print(f'iterations-prevalence={r.nit}')
|
||||
assert r.success, 'Process did not converge!'
|
||||
if return_loss:
|
||||
return r.x, r.fun
|
||||
else:
|
||||
return r.x
|
||||
|
||||
|
||||
|
||||
class KDEyMLauto2(KDEyML):
|
||||
|
||||
def __init__(self, classifier: BaseEstimator=None, val_split=5, bandwidth=0.1, random_state=None, reduction=100, max_reduced=500, target='likelihood'):
|
||||
"""
|
||||
reduction: number of examples per class for automatically setting the bandwidth
|
||||
"""
|
||||
self.classifier = qp._get_classifier(classifier)
|
||||
self.val_split = val_split
|
||||
if bandwidth == 'auto':
|
||||
self.bandwidth = bandwidth
|
||||
else:
|
||||
self.bandwidth = KDEBase._check_bandwidth(bandwidth)
|
||||
self.reduction = reduction
|
||||
self.max_reduced = max_reduced
|
||||
self.random_state = random_state
|
||||
assert target in ['likelihood', 'likelihood+'] or target in qp.error.QUANTIFICATION_ERROR_NAMES, 'unknown target for auto'
|
||||
self.target = target
|
||||
|
||||
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
|
||||
if self.bandwidth == 'auto':
|
||||
self.auto_bandwidth_likelihood(classif_predictions)
|
||||
else:
|
||||
self.bandwidth_ = self.bandwidth
|
||||
self.mix_densities = self.get_mixture_components(*classif_predictions.Xy, data.classes_, self.bandwidth_)
|
||||
return self
|
||||
|
||||
def auto_bandwidth_likelihood(self, classif_predictions: LabelledCollection):
|
||||
n_classes = classif_predictions.n_classes
|
||||
|
||||
train, val = classif_predictions.split_stratified(train_prop=0.5, random_state=self.random_state)
|
||||
|
||||
if self.reduction is not None:
|
||||
# reduce samples to speed up computation
|
||||
tr_length = min(self.reduction * n_classes, self.max_reduced)
|
||||
if len(train) > tr_length:
|
||||
train = train.sampling(tr_length)
|
||||
|
||||
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
|
||||
repeats = 25
|
||||
prot = UPP(val, sample_size=self.reduction, repeats=repeats, random_state=self.random_state)
|
||||
|
||||
if self.target == 'likelihood+':
|
||||
|
||||
def neg_loglikelihood_bandwidth(bandwidth):
|
||||
mix_densities = self.get_mixture_components(*train.Xy, train.classes_, bandwidth)
|
||||
|
||||
loss_accum = 0
|
||||
for (sample, prevtrue) in prot():
|
||||
test_densities = [self.pdf(kde_i, sample) for kde_i in mix_densities]
|
||||
|
||||
def neg_loglikelihood_prev(prev):
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
nll = -np.sum(test_loglikelihood)
|
||||
return nll
|
||||
|
||||
pred_prev, neglikelihood = optim_minimize(neg_loglikelihood_prev, init_prev, return_loss=True)
|
||||
# print(f'\t\tprev={F.strprev(pred_prev)} (true={F.strprev(prev)}) got {neglikelihood=}')
|
||||
loss_accum += neglikelihood
|
||||
return loss_accum
|
||||
|
||||
r = optimize.minimize_scalar(neg_loglikelihood_bandwidth, bounds=(0.00001, 0.2))
|
||||
best_band = r.x
|
||||
best_loss_value = r.fun
|
||||
nit = r.nit
|
||||
# assert r.success, 'Process did not converge!'
|
||||
#found bandwidth=0.00994664 after nit=3 iterations loss_val=-212247.24305)
|
||||
|
||||
else:
|
||||
best_band = None
|
||||
best_loss_value = None
|
||||
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
|
||||
for bandwidth in np.logspace(-4, np.log10(0.2), 20):
|
||||
mix_densities = self.get_mixture_components(*train.Xy, train.classes_, bandwidth)
|
||||
|
||||
loss_accum = 0
|
||||
for (sample, prev) in tqdm(prot(), total=repeats):
|
||||
test_densities = [self.pdf(kde_i, sample) for kde_i in mix_densities]
|
||||
|
||||
def neg_loglikelihood_prev_(prev):
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
return -np.sum(test_loglikelihood)
|
||||
|
||||
if self.target == 'likelihood':
|
||||
loss_fn = neg_loglikelihood_prev_
|
||||
else:
|
||||
loss_fn = lambda prev_hat: qp.error.from_name(self.target)(prev, prev_hat)
|
||||
|
||||
pred_prev, loss_val = optim_minimize(loss_fn, init_prev, return_loss=True)
|
||||
loss_accum += loss_val
|
||||
|
||||
if best_loss_value is None or loss_accum < best_loss_value:
|
||||
best_loss_value = loss_accum
|
||||
best_band = bandwidth
|
||||
nit=20
|
||||
|
||||
print(f'found bandwidth={best_band:.8f} after {nit=} iterations loss_val={best_loss_value:.5f})')
|
||||
self.bandwidth_ = best_band
|
||||
|
||||
|
||||
class KDEyMLred(KDEyML):
|
||||
def __init__(self, classifier: BaseEstimator=None, val_split=5, bandwidth=0.1, random_state=None, reduction=100, max_reduced=500):
|
||||
self.classifier = qp._get_classifier(classifier)
|
||||
self.val_split = val_split
|
||||
self.bandwidth = KDEBase._check_bandwidth(bandwidth)
|
||||
self.reduction = reduction
|
||||
self.max_reduced = max_reduced
|
||||
self.random_state = random_state
|
||||
|
||||
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
|
||||
n_classes = classif_predictions.n_classes
|
||||
tr_length = min(self.reduction * n_classes, self.max_reduced)
|
||||
if len(classif_predictions) > tr_length:
|
||||
classif_predictions = classif_predictions.sampling(tr_length)
|
||||
self.mix_densities = self.get_mixture_components(*classif_predictions.Xy, data.classes_, self.bandwidth)
|
||||
return self
|
||||
|
||||
|
|
@ -0,0 +1,163 @@
|
|||
import pickle
|
||||
import os
|
||||
from time import time
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
import quapy as qp
|
||||
from KDEy.kdey_devel import KDEyMLauto, KDEyMLauto2, KDEyMLred
|
||||
from quapy.method.aggregative import PACC, EMQ, KDEyML
|
||||
from quapy.model_selection import GridSearchQ
|
||||
from quapy.protocol import UPP
|
||||
from pathlib import Path
|
||||
|
||||
SEED = 1
|
||||
|
||||
|
||||
def newLR():
|
||||
return LogisticRegression(max_iter=3000)
|
||||
|
||||
|
||||
# typical hyperparameters explored for Logistic Regression
|
||||
logreg_grid = {
|
||||
'C': np.logspace(-3,3,7),
|
||||
'class_weight': [None, 'balanced']
|
||||
}
|
||||
|
||||
|
||||
def wrap_hyper(classifier_hyper_grid: dict):
|
||||
return {'classifier__' + k: v for k, v in classifier_hyper_grid.items()}
|
||||
|
||||
|
||||
METHODS = [
|
||||
('PACC', PACC(newLR()), wrap_hyper(logreg_grid)),
|
||||
('EMQ', EMQ(newLR()), wrap_hyper(logreg_grid)),
|
||||
('KDEy-ML', KDEyML(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.logspace(-4, np.log10(0.2), 20)}}),
|
||||
# ('KDEy-MLred', KDEyMLred(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.logspace(-4, np.log10(0.2), 20)}}),
|
||||
('KDEy-ML-scott', KDEyML(newLR(), bandwidth='scott'), wrap_hyper(logreg_grid)),
|
||||
('KDEy-ML-silver', KDEyML(newLR(), bandwidth='silverman'), wrap_hyper(logreg_grid)),
|
||||
('KDEy-ML-autoLike', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood'), wrap_hyper(logreg_grid)),
|
||||
('KDEy-ML-autoLike+', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood+'), wrap_hyper(logreg_grid)),
|
||||
('KDEy-ML-autoAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mae'), wrap_hyper(logreg_grid)),
|
||||
('KDEy-ML-autoRAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mrae'), wrap_hyper(logreg_grid)),
|
||||
]
|
||||
|
||||
|
||||
"""
|
||||
TKDEyML era primero bandwidth (init 0.05) y luego prevalence (init uniform)
|
||||
TKDEyML2 era primero prevalence (init uniform) y luego bandwidth (init 0.05)
|
||||
TKDEyML3 era primero prevalence (init uniform) y luego bandwidth (init 0.1)
|
||||
TKDEyML4 es como ML2 pero max 5 iteraciones por optimización
|
||||
"""
|
||||
TRANSDUCTIVE_METHODS = [
|
||||
#('TKDEy-ML', KDEyMLauto(newLR()), None),
|
||||
# ('TKDEy-MLboth', KDEyMLauto(newLR(), optim='both'), None),
|
||||
# ('TKDEy-MLbothfine', KDEyMLauto(newLR(), optim='both_fine'), None),
|
||||
# ('TKDEy-ML2', KDEyMLauto(newLR(), optim='two_steps'), None),
|
||||
# ('TKDEy-MLike', KDEyMLauto(newLR(), optim='max_likelihood'), None),
|
||||
# ('TKDEy-MLike2', KDEyMLauto(newLR(), optim='max_likelihood2'), None),
|
||||
#('TKDEy-ML3', KDEyMLauto(newLR()), None),
|
||||
#('TKDEy-ML4', KDEyMLauto(newLR()), None),
|
||||
]
|
||||
|
||||
def show_results(result_path):
|
||||
import pandas as pd
|
||||
df = pd.read_csv(result_path + '.csv', sep='\t')
|
||||
pd.set_option('display.max_columns', None)
|
||||
pd.set_option('display.max_rows', None)
|
||||
pd.set_option('display.width', 1000) # Ajustar el ancho máximo
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE"], margins=True)
|
||||
print(pv)
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["MRAE"], margins=True)
|
||||
print(pv)
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["KLD"], margins=True)
|
||||
print(pv)
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["TR-TIME"], margins=True)
|
||||
print(pv)
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["TE-TIME"], margins=True)
|
||||
print(pv)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
qp.environ['SAMPLE_SIZE'] = 500
|
||||
qp.environ['N_JOBS'] = -1
|
||||
n_bags_val = 25
|
||||
n_bags_test = 100
|
||||
result_dir = f'results_quantification/ucimulti'
|
||||
|
||||
os.makedirs(result_dir, exist_ok=True)
|
||||
|
||||
global_result_path = f'{result_dir}/allmethods'
|
||||
with open(global_result_path + '.csv', 'wt') as csv:
|
||||
csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\tTR-TIME\tTE-TIME\n')
|
||||
|
||||
for method_name, quantifier, param_grid in METHODS + TRANSDUCTIVE_METHODS:
|
||||
|
||||
print('Init method', method_name)
|
||||
|
||||
with open(global_result_path + '.csv', 'at') as csv:
|
||||
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS:
|
||||
print('init', dataset)
|
||||
|
||||
# run_experiment(global_result_path, method_name, quantifier, param_grid, dataset)
|
||||
local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe')
|
||||
|
||||
if os.path.exists(local_result_path):
|
||||
print(f'result file {local_result_path} already exist; skipping')
|
||||
report = qp.util.load_report(local_result_path)
|
||||
|
||||
else:
|
||||
with qp.util.temp_seed(SEED):
|
||||
|
||||
data = qp.datasets.fetch_UCIMulticlassDataset(dataset, verbose=True)
|
||||
train, test = data.train_test
|
||||
|
||||
transductive_names = [name for (name, *_) in TRANSDUCTIVE_METHODS]
|
||||
|
||||
if method_name not in transductive_names:
|
||||
if len(param_grid) == 0:
|
||||
t_init = time()
|
||||
quantifier.fit(train)
|
||||
train_time = time() - t_init
|
||||
else:
|
||||
# model selection (train)
|
||||
train, val = train.split_stratified(random_state=SEED)
|
||||
protocol = UPP(val, repeats=n_bags_val)
|
||||
modsel = GridSearchQ(
|
||||
quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error='mae'
|
||||
)
|
||||
t_init = time()
|
||||
try:
|
||||
modsel.fit(train)
|
||||
print(f'best params {modsel.best_params_}')
|
||||
print(f'best score {modsel.best_score_}')
|
||||
quantifier = modsel.best_model()
|
||||
except:
|
||||
print('something went wrong... trying to fit the default model')
|
||||
quantifier.fit(train)
|
||||
train_time = time() - t_init
|
||||
else:
|
||||
# transductive
|
||||
t_init = time()
|
||||
quantifier.fit(train) # <-- nothing actually (proyects the X into posteriors only)
|
||||
train_time = time() - t_init
|
||||
|
||||
# test
|
||||
t_init = time()
|
||||
protocol = UPP(test, repeats=n_bags_test)
|
||||
report = qp.evaluation.evaluation_report(
|
||||
quantifier, protocol, error_metrics=['mae', 'mrae', 'kld'], verbose=True
|
||||
)
|
||||
test_time = time() - t_init
|
||||
report['tr_time'] = train_time
|
||||
report['te_time'] = test_time
|
||||
report.to_csv(local_result_path)
|
||||
|
||||
means = report.mean(numeric_only=True)
|
||||
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n')
|
||||
csv.flush()
|
||||
|
||||
show_results(global_result_path)
|
||||
|
|
@ -0,0 +1,188 @@
|
|||
import pickle
|
||||
import os
|
||||
from time import time
|
||||
from collections import defaultdict
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
import quapy as qp
|
||||
from KDEy.kdey_devel import KDEyMLauto, optim_minimize
|
||||
from method._kdey import KDEBase
|
||||
from quapy.method.aggregative import PACC, EMQ, KDEyML
|
||||
from quapy.model_selection import GridSearchQ
|
||||
from quapy.protocol import UPP
|
||||
from pathlib import Path
|
||||
from quapy import functional as F
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
SEED = 1
|
||||
|
||||
|
||||
def newLR():
|
||||
return LogisticRegression(max_iter=1000)#, C=1, class_weight='balanced')
|
||||
|
||||
SAMPLE_SIZE=150
|
||||
qp.environ['SAMPLE_SIZE'] = SAMPLE_SIZE
|
||||
|
||||
show_ae = True
|
||||
show_rae = True
|
||||
show_mse = False
|
||||
show_kld = True
|
||||
|
||||
epsilon = 1e-10
|
||||
# n_bags_test = 2
|
||||
# DATASETS = [qp.datasets.UCI_MULTICLASS_DATASETS[21]]
|
||||
DATASETS = qp.datasets.UCI_MULTICLASS_DATASETS
|
||||
for i, dataset in enumerate(DATASETS):
|
||||
|
||||
def generate_data():
|
||||
data = qp.datasets.fetch_UCIMulticlassDataset(dataset)
|
||||
n_classes = data.n_classes
|
||||
print(f'{i=}')
|
||||
print(f'{dataset=}')
|
||||
print(f'{n_classes=}')
|
||||
print(len(data.training))
|
||||
print(len(data.test))
|
||||
|
||||
train, test = data.train_test
|
||||
train_prev = train.prevalence()
|
||||
test_prev = test.prevalence()
|
||||
|
||||
print(f'train-prev = {F.strprev(train_prev)}')
|
||||
print(f'test-prev = {F.strprev(test_prev)}')
|
||||
|
||||
repeats = 10
|
||||
prot = UPP(test, sample_size=SAMPLE_SIZE, repeats=repeats)
|
||||
kde = KDEyMLauto(newLR())
|
||||
kde.fit(train)
|
||||
AE_error, RAE_error, MSE_error, KLD_error, LIKE_value = [], [], [], [], []
|
||||
tr_posteriors, tr_y = kde.classif_predictions.Xy
|
||||
for it, (sample, prev) in tqdm(enumerate(prot()), total=repeats):
|
||||
te_posteriors = kde.classifier.predict_proba(sample)
|
||||
classes = train.classes_
|
||||
|
||||
xaxis = []
|
||||
ae_error = []
|
||||
rae_error = []
|
||||
mse_error = []
|
||||
kld_error = []
|
||||
likelihood_value = []
|
||||
|
||||
# for bandwidth in np.linspace(0.01, 0.2, 50):
|
||||
for bandwidth in np.logspace(-5, 0.5, 50):
|
||||
mix_densities = kde.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth)
|
||||
test_densities = [kde.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
|
||||
|
||||
def neg_loglikelihood_prev(prev):
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
return -np.sum(test_loglikelihood)
|
||||
|
||||
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
|
||||
pred_prev, likelihood = optim_minimize(neg_loglikelihood_prev, init_prev, return_loss=True)
|
||||
|
||||
xaxis.append(bandwidth)
|
||||
ae_error.append(qp.error.ae(prev, pred_prev))
|
||||
rae_error.append(qp.error.rae(prev, pred_prev))
|
||||
mse_error.append(qp.error.mse(prev, pred_prev))
|
||||
kld_error.append(qp.error.kld(prev, pred_prev))
|
||||
likelihood_value.append(likelihood)
|
||||
|
||||
AE_error.append(ae_error)
|
||||
RAE_error.append(rae_error)
|
||||
MSE_error.append(mse_error)
|
||||
KLD_error.append(kld_error)
|
||||
LIKE_value.append(likelihood_value)
|
||||
|
||||
return xaxis, AE_error, RAE_error, MSE_error, KLD_error, LIKE_value
|
||||
|
||||
xaxis, AE_error, RAE_error, MSE_error, KLD_error, LIKE_value = qp.util.pickled_resource(
|
||||
f'./plots/likelihood/pickles/{dataset}.pkl', generate_data)
|
||||
|
||||
for row in range(len(AE_error)):
|
||||
|
||||
# Crear la figura
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
fig, ax1 = plt.subplots(figsize=(8, 6))
|
||||
|
||||
# Pintar las series ae_error, rae_error, y kld_error en el primer eje Y
|
||||
if show_ae:
|
||||
ax1.plot(xaxis, AE_error[row], label='AE', marker='o', color='b')
|
||||
if show_rae:
|
||||
ax1.plot(xaxis, RAE_error[row], label='RAE', marker='s', color='g')
|
||||
if show_kld:
|
||||
ax1.plot(xaxis, KLD_error[row], label='KLD', marker='^', color='r')
|
||||
if show_mse:
|
||||
ax1.plot(xaxis, MSE_error[row], label='MSE', marker='^', color='c')
|
||||
ax1.set_xscale('log')
|
||||
|
||||
# Configurar etiquetas para el primer eje Y
|
||||
ax1.set_xlabel('Bandwidth')
|
||||
ax1.set_ylabel('Error Value')
|
||||
ax1.grid(True)
|
||||
ax1.legend(loc='upper left')
|
||||
|
||||
# Crear un segundo eje Y que comparte el eje X
|
||||
ax2 = ax1.twinx()
|
||||
|
||||
# Pintar likelihood_val en el segundo eje Y
|
||||
ax2.plot(xaxis, LIKE_value[row], label='(neg)Likelihood', marker='x', color='purple')
|
||||
|
||||
# Configurar etiquetas para el segundo eje Y
|
||||
ax2.set_ylabel('Likelihood Value')
|
||||
ax2.legend(loc='upper right')
|
||||
|
||||
# Mostrar el gráfico
|
||||
plt.title('Error Metrics vs Bandwidth')
|
||||
# plt.show()
|
||||
os.makedirs('./plots/likelihood/', exist_ok=True)
|
||||
plt.savefig(f'./plots/likelihood/{dataset}-fig{row}.png')
|
||||
plt.close()
|
||||
|
||||
# Crear la figura con las medias
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
fig, ax1 = plt.subplots(figsize=(8, 6))
|
||||
|
||||
def add_plot(ax, vals_error, name, color, marker, show):
|
||||
if not show:
|
||||
return
|
||||
vals_error = np.asarray(vals_error)
|
||||
vals_ave = np.mean(vals_error, axis=0)
|
||||
vals_std = np.std(vals_error, axis=0)
|
||||
ax.plot(xaxis, vals_ave, label=name, marker=marker, color=color)
|
||||
ax.fill_between(xaxis, vals_ave - vals_std, vals_ave + vals_std, color=color, alpha=0.2)
|
||||
|
||||
add_plot(ax1, AE_error, 'AE', color='b', marker='o', show=show_ae)
|
||||
add_plot(ax1, RAE_error, 'RAE', color='g', marker='s', show=show_rae)
|
||||
add_plot(ax1, KLD_error, 'KLD', color='r', marker='^', show=show_kld)
|
||||
add_plot(ax1, MSE_error, 'MSE', color='c', marker='^', show=show_mse)
|
||||
ax1.set_xscale('log')
|
||||
|
||||
# Configurar etiquetas para el primer eje Y
|
||||
ax1.set_xlabel('Bandwidth')
|
||||
ax1.set_ylabel('Error Value')
|
||||
ax1.grid(True)
|
||||
ax1.legend(loc='upper left')
|
||||
|
||||
# Crear un segundo eje Y que comparte el eje X
|
||||
ax2 = ax1.twinx()
|
||||
|
||||
# Pintar likelihood_val en el segundo eje Y
|
||||
add_plot(ax2, LIKE_value, '(neg)Likelihood', color='purple', marker='x', show=True)
|
||||
|
||||
# Configurar etiquetas para el segundo eje Y
|
||||
ax2.set_ylabel('Likelihood Value')
|
||||
ax2.legend(loc='upper right')
|
||||
|
||||
# Mostrar el gráfico
|
||||
plt.title('Error Metrics vs Bandwidth')
|
||||
# plt.show()
|
||||
os.makedirs('./plots/likelihood/', exist_ok=True)
|
||||
plt.savefig(f'./plots/likelihood/{dataset}-figAve.png')
|
||||
plt.close()
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,81 @@
|
|||
import time
|
||||
from functools import wraps
|
||||
import os
|
||||
from os.path import join
|
||||
from result_table.src.table import Table
|
||||
import numpy as np
|
||||
from constants import *
|
||||
|
||||
def measuretime(func):
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
start_time = time.time()
|
||||
result = func(*args, **kwargs)
|
||||
end_time = time.time()
|
||||
time_it_took = end_time - start_time
|
||||
if isinstance(result, tuple):
|
||||
return (*result, time_it_took)
|
||||
else:
|
||||
return result, time_it_took
|
||||
return wrapper
|
||||
|
||||
|
||||
def plot_bandwidth(dataset_name, test_results, bandwidths, triplet_list_results):
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
print("PLOT", dataset_name)
|
||||
print(dataset_name)
|
||||
|
||||
plt.figure(figsize=(8, 6))
|
||||
|
||||
# show test results
|
||||
plt.plot(bandwidths, test_results, marker='o', color='k')
|
||||
|
||||
colors = plt.cm.tab10(np.linspace(0, 1, len(triplet_list_results)))
|
||||
for i, (method_name, method_choice, method_time) in enumerate(triplet_list_results):
|
||||
plt.axvline(x=method_choice, linestyle='--', label=method_name, color=colors[i])
|
||||
|
||||
# Agregar etiquetas y título
|
||||
plt.xlabel('Bandwidth')
|
||||
plt.ylabel('MAE')
|
||||
plt.title(dataset_name)
|
||||
|
||||
# Mostrar la leyenda
|
||||
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
||||
|
||||
# Mostrar la gráfica
|
||||
plt.grid(True)
|
||||
|
||||
plotdir = './plots'
|
||||
if DEBUG:
|
||||
plotdir = './plots_debug'
|
||||
os.makedirs(plotdir, exist_ok=True)
|
||||
plt.tight_layout()
|
||||
plt.savefig(f'{plotdir}/{dataset_name}.png')
|
||||
plt.close()
|
||||
|
||||
def error_table(dataset_name, test_results, bandwidth_range, triplet_list_results):
|
||||
best_bandwidth = bandwidth_range[np.argmin(test_results)]
|
||||
best_score = np.min(test_results)
|
||||
print(f'Method\tChoice\tAE\tTime')
|
||||
table=Table(name=dataset_name)
|
||||
table.format.with_mean=False
|
||||
table.format.with_rank_mean = False
|
||||
table.format.show_std = False
|
||||
for method_name, method_choice, took in triplet_list_results:
|
||||
if method_choice in bandwidth_range:
|
||||
index = np.where(bandwidth_range == method_choice)[0][0]
|
||||
method_score = test_results[index]
|
||||
else:
|
||||
method_score = 1
|
||||
error = np.abs(best_score-method_score)
|
||||
table.add(benchmark='Choice', method=method_name, v=method_choice)
|
||||
table.add(benchmark='ScoreChoice', method=method_name, v=method_score)
|
||||
table.add(benchmark='Best', method=method_name, v=best_bandwidth)
|
||||
table.add(benchmark='ScoreBest', method=method_name, v=best_score)
|
||||
table.add(benchmark='AE', method=method_name, v=error)
|
||||
table.add(benchmark='Time', method=method_name, v=took)
|
||||
outpath = './tables'
|
||||
if DEBUG:
|
||||
outpath = './tables_debug'
|
||||
table.latexPDF(join(outpath, dataset_name+'.pdf'), transpose=True)
|
||||
|
|
@ -0,0 +1,18 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class DistributionRegressor(nn.Module):
|
||||
|
||||
def __init__(self, n_classes, hidden_dim=256):
|
||||
super(DistributionRegressor, self).__init__()
|
||||
self.fc1 = nn.Linear(n_classes, hidden_dim)
|
||||
self.fc2 = nn.Linear(hidden_dim, n_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
x = F.softmax(x, dim=-1)
|
||||
return x
|
||||
|
||||
|
|
@ -0,0 +1,126 @@
|
|||
import os
|
||||
from time import time
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
import quapy as qp
|
||||
from LocalStack.method import *
|
||||
from quapy.method.aggregative import PACC, EMQ, KDEyML
|
||||
from quapy.model_selection import GridSearchQ
|
||||
from quapy.protocol import UPP
|
||||
from pathlib import Path
|
||||
|
||||
SEED = 1
|
||||
|
||||
|
||||
|
||||
METHODS = [
|
||||
('PACC', PACC(), {}),
|
||||
('EMQ', EMQ(), {}),
|
||||
('KDEy-ML', KDEyML(), {}),
|
||||
]
|
||||
|
||||
TRANSDUCTIVE_METHODS = [
|
||||
# ('LSQ', LocalStackingQuantification(EMQ()), {}),
|
||||
# ('LSQ2', LocalStackingQuantification2(EMQ()), {}),
|
||||
('LSQ-torch', LocalStackingQuantification3(EMQ()), {})
|
||||
]
|
||||
|
||||
def show_results(result_path):
|
||||
import pandas as pd
|
||||
df = pd.read_csv(result_path + '.csv', sep='\t')
|
||||
pd.set_option('display.max_columns', None)
|
||||
pd.set_option('display.max_rows', None)
|
||||
pd.set_option('display.width', 1000) # Ajustar el ancho máximo
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE"], margins=True)
|
||||
print(pv)
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["MRAE"], margins=True)
|
||||
print(pv)
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["KLD"], margins=True)
|
||||
print(pv)
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["TR-TIME"], margins=True)
|
||||
print(pv)
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["TE-TIME"], margins=True)
|
||||
print(pv)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
qp.environ['SAMPLE_SIZE'] = 500
|
||||
qp.environ['N_JOBS'] = -1
|
||||
n_bags_val = 25
|
||||
n_bags_test = 100
|
||||
result_dir = f'results_quantification/localstack'
|
||||
|
||||
os.makedirs(result_dir, exist_ok=True)
|
||||
|
||||
global_result_path = f'{result_dir}/allmethods'
|
||||
with open(global_result_path + '.csv', 'wt') as csv:
|
||||
csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\tTR-TIME\tTE-TIME\n')
|
||||
|
||||
for method_name, quantifier, param_grid in METHODS + TRANSDUCTIVE_METHODS:
|
||||
|
||||
print('Init method', method_name)
|
||||
|
||||
with open(global_result_path + '.csv', 'at') as csv:
|
||||
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS:
|
||||
print('init', dataset)
|
||||
|
||||
# run_experiment(global_result_path, method_name, quantifier, param_grid, dataset)
|
||||
local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe')
|
||||
|
||||
if os.path.exists(local_result_path):
|
||||
print(f'result file {local_result_path} already exist; skipping')
|
||||
report = qp.util.load_report(local_result_path)
|
||||
|
||||
else:
|
||||
with qp.util.temp_seed(SEED):
|
||||
|
||||
data = qp.datasets.fetch_UCIMulticlassDataset(dataset, verbose=True)
|
||||
train, test = data.train_test
|
||||
|
||||
transductive_names = [name for (name, *_) in TRANSDUCTIVE_METHODS]
|
||||
|
||||
if method_name not in transductive_names:
|
||||
if len(param_grid) == 0:
|
||||
t_init = time()
|
||||
quantifier.fit(train)
|
||||
train_time = time() - t_init
|
||||
else:
|
||||
# model selection (train)
|
||||
train, val = train.split_stratified(random_state=SEED)
|
||||
protocol = UPP(val, repeats=n_bags_val)
|
||||
modsel = GridSearchQ(
|
||||
quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error='mae'
|
||||
)
|
||||
t_init = time()
|
||||
try:
|
||||
modsel.fit(train)
|
||||
print(f'best params {modsel.best_params_}')
|
||||
print(f'best score {modsel.best_score_}')
|
||||
quantifier = modsel.best_model()
|
||||
except:
|
||||
print('something went wrong... trying to fit the default model')
|
||||
quantifier.fit(train)
|
||||
train_time = time() - t_init
|
||||
else:
|
||||
# transductive
|
||||
t_init = time()
|
||||
quantifier.fit(train) # <-- nothing actually (proyects the X into posteriors only)
|
||||
train_time = time() - t_init
|
||||
|
||||
# test
|
||||
t_init = time()
|
||||
protocol = UPP(test, repeats=n_bags_test)
|
||||
report = qp.evaluation.evaluation_report(
|
||||
quantifier, protocol, error_metrics=['mae', 'mrae', 'kld'], verbose=True
|
||||
)
|
||||
test_time = time() - t_init
|
||||
report['tr_time'] = train_time
|
||||
report['te_time'] = test_time
|
||||
report.to_csv(local_result_path)
|
||||
|
||||
means = report.mean(numeric_only=True)
|
||||
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n')
|
||||
csv.flush()
|
||||
|
||||
show_results(global_result_path)
|
||||
|
|
@ -0,0 +1,206 @@
|
|||
import numpy as np
|
||||
import torch
|
||||
|
||||
import quapy as qp
|
||||
from sklearn.multioutput import MultiOutputRegressor
|
||||
from sklearn.svm import SVR
|
||||
|
||||
from LocalStack._neural import DistributionRegressor
|
||||
from quapy.data import LabelledCollection
|
||||
from quapy.method.base import BaseQuantifier
|
||||
from quapy.method.aggregative import AggregativeSoftQuantifier
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class LocalStackingQuantification(BaseQuantifier):
|
||||
|
||||
def __init__(self, surrogate_quantifier, n_samples_gen=200, n_samples_sel=50, comparison_measure='ae'):
|
||||
assert isinstance(surrogate_quantifier, AggregativeSoftQuantifier), \
|
||||
f'the surrogate quantifier must be of type {AggregativeSoftQuantifier.__class__.__name__}'
|
||||
self.surrogate_quantifier = surrogate_quantifier
|
||||
self.n_samples_gen = n_samples_gen
|
||||
self.n_samples_sel = n_samples_sel
|
||||
self.comparison_measure = qp.error.from_name(comparison_measure)
|
||||
|
||||
def fit(self, data: LabelledCollection):
|
||||
train, val = data.split_stratified()
|
||||
self.surrogate_quantifier.fit(train)
|
||||
self.val_data = val
|
||||
return self
|
||||
|
||||
def normalize(self, out_simplex:np.ndarray):
|
||||
in_simplex = out_simplex/out_simplex.sum()
|
||||
return in_simplex
|
||||
|
||||
def quantify(self, instances: np.ndarray):
|
||||
assert hasattr(self, 'val_data'), 'quantify called before fit'
|
||||
pred_prevs = self.surrogate_quantifier.quantify(instances)
|
||||
test_size = instances.shape[0]
|
||||
|
||||
samples = []
|
||||
samples_pred_prevs = []
|
||||
samples_distance = []
|
||||
for i in range(self.n_samples_gen):
|
||||
sample_i = self.val_data.sampling(test_size, *pred_prevs, random_state=self.random_state)
|
||||
pred_prev_sample_i = self.surrogate_quantifier.quantify(sample_i.X)
|
||||
err_dist = self.comparison_measure(pred_prevs, pred_prev_sample_i)
|
||||
|
||||
samples.append(sample_i)
|
||||
samples_pred_prevs.append(pred_prev_sample_i)
|
||||
samples_distance.append(err_dist)
|
||||
|
||||
ord_distances = np.argsort(samples_distance)
|
||||
samples_sel = np.asarray(samples)[ord_distances][:self.n_samples_sel]
|
||||
samples_pred_prevs_sel = np.asarray(samples_pred_prevs)[ord_distances][:self.n_samples_sel]
|
||||
|
||||
reg = MultiOutputRegressor(SVR())
|
||||
reg_X = samples_pred_prevs_sel
|
||||
reg_y = [s.prevalence() for s in samples_sel]
|
||||
reg.fit(reg_X, reg_y)
|
||||
|
||||
corrected_prev = reg.predict([pred_prevs])[0]
|
||||
|
||||
corrected_prev = self.normalize(corrected_prev)
|
||||
return corrected_prev
|
||||
|
||||
|
||||
|
||||
class LocalStackingQuantification2(BaseQuantifier):
|
||||
|
||||
"""
|
||||
Este en vez de seleccionar samples de training para los que la prevalencia predicha se parece a la prevalencia
|
||||
predica en test, saca directamente samples de training con la prevalencia predicha en test
|
||||
"""
|
||||
|
||||
def __init__(self, surrogate_quantifier, n_samples_gen=200, n_samples_sel=50, comparison_measure='ae'):
|
||||
assert isinstance(surrogate_quantifier, AggregativeSoftQuantifier), \
|
||||
f'the surrogate quantifier must be of type {AggregativeSoftQuantifier.__class__.__name__}'
|
||||
self.surrogate_quantifier = surrogate_quantifier
|
||||
self.n_samples_gen = n_samples_gen
|
||||
self.n_samples_sel = n_samples_sel
|
||||
self.comparison_measure = qp.error.from_name(comparison_measure)
|
||||
|
||||
def fit(self, data: LabelledCollection):
|
||||
train, val = data.split_stratified()
|
||||
self.surrogate_quantifier.fit(train)
|
||||
self.val_data = val
|
||||
return self
|
||||
|
||||
def normalize(self, out_simplex:np.ndarray):
|
||||
in_simplex = out_simplex/out_simplex.sum()
|
||||
return in_simplex
|
||||
|
||||
def quantify(self, instances: np.ndarray):
|
||||
assert hasattr(self, 'val_data'), 'quantify called before fit'
|
||||
pred_prevs = self.surrogate_quantifier.quantify(instances)
|
||||
test_size = instances.shape[0]
|
||||
|
||||
samples = []
|
||||
samples_pred_prevs = []
|
||||
for i in range(self.n_samples_gen):
|
||||
sample_i = self.val_data.sampling(test_size, *pred_prevs)
|
||||
pred_prev_sample_i = self.surrogate_quantifier.quantify(sample_i.X)
|
||||
samples.append(sample_i)
|
||||
samples_pred_prevs.append(pred_prev_sample_i)
|
||||
|
||||
reg = MultiOutputRegressor(SVR())
|
||||
reg_X = samples_pred_prevs
|
||||
reg_y = [s.prevalence() for s in samples]
|
||||
reg.fit(reg_X, reg_y)
|
||||
|
||||
corrected_prev = reg.predict([pred_prevs])[0]
|
||||
|
||||
corrected_prev = self.normalize(corrected_prev)
|
||||
return corrected_prev
|
||||
|
||||
|
||||
class LocalStackingQuantification3(BaseQuantifier):
|
||||
|
||||
"""
|
||||
Este hace una red neuronal para el regresor y optimiza una metrica especifica
|
||||
"""
|
||||
|
||||
def __init__(self, surrogate_quantifier, batch_size=100, target='ae'):
|
||||
assert isinstance(surrogate_quantifier, AggregativeSoftQuantifier), \
|
||||
f'the surrogate quantifier must be of type {AggregativeSoftQuantifier.__class__.__name__}'
|
||||
self.surrogate_quantifier = surrogate_quantifier
|
||||
self.batch_size = batch_size
|
||||
self.target = target
|
||||
if target not in ['ae']:
|
||||
raise NotImplementedError('only AE supported')
|
||||
|
||||
def fit(self, data: LabelledCollection):
|
||||
train, val = data.split_stratified()
|
||||
self.surrogate_quantifier.fit(train)
|
||||
self.val_data = val
|
||||
return self
|
||||
|
||||
def gen_batch(self, test_size, pred_prevs):
|
||||
samples_true_prevs = []
|
||||
samples_pred_prevs = []
|
||||
for i in range(self.batch_size):
|
||||
sample_i = self.val_data.sampling(test_size, *pred_prevs)
|
||||
pred_prev_sample_i = self.surrogate_quantifier.quantify(sample_i.X)
|
||||
samples_true_prevs.append(sample_i.prevalence())
|
||||
samples_pred_prevs.append(pred_prev_sample_i)
|
||||
|
||||
samples_pred_prevs = torch.from_numpy(np.asarray(samples_pred_prevs)).float()
|
||||
samples_true_prevs = torch.from_numpy(np.asarray(samples_true_prevs)).float()
|
||||
|
||||
return samples_true_prevs, samples_pred_prevs
|
||||
|
||||
|
||||
|
||||
def quantify(self, instances: np.ndarray):
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
assert hasattr(self, 'val_data'), 'quantify called before fit'
|
||||
pred_prevs = self.surrogate_quantifier.quantify(instances)
|
||||
test_size = instances.shape[0]
|
||||
n_classes = len(pred_prevs)
|
||||
|
||||
reg = DistributionRegressor(n_classes)
|
||||
optimizer = torch.optim.Adam(reg.parameters(), lr=0.01)
|
||||
loss_fn = nn.L1Loss()
|
||||
|
||||
reg.train()
|
||||
n_epochs = 500
|
||||
best_loss = None
|
||||
PATIENCE = 10
|
||||
patience = PATIENCE
|
||||
pbar = tqdm(range(n_epochs), total=n_epochs)
|
||||
for epoch in pbar:
|
||||
true_prev, pred_prev = self.gen_batch(test_size, pred_prevs)
|
||||
pred_prev_hat = reg(pred_prev)
|
||||
loss = loss_fn(pred_prev_hat, true_prev)
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
loss_val = loss.item()
|
||||
pbar.set_description(f'loss={loss_val:.5f}')
|
||||
|
||||
# early stop
|
||||
if best_loss is None or loss_val < best_loss:
|
||||
best_loss = loss_val
|
||||
patience = PATIENCE
|
||||
else:
|
||||
patience -= 1
|
||||
|
||||
if patience <= 0:
|
||||
print('\tearly stop!')
|
||||
break
|
||||
|
||||
reg.eval()
|
||||
with torch.no_grad():
|
||||
target_prev = torch.from_numpy(pred_prevs).float()
|
||||
corrected_prev = reg(target_prev)
|
||||
corrected_prev = corrected_prev.detach().numpy()
|
||||
return corrected_prev
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
import os
|
||||
from time import time
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
import quapy as qp
|
||||
from LocalStack.method import *
|
||||
from quapy.method.aggregative import PACC, EMQ, KDEyML
|
||||
from quapy.model_selection import GridSearchQ
|
||||
from quapy.protocol import UPP
|
||||
from pathlib import Path
|
||||
|
||||
SEED = 1
|
||||
|
||||
|
||||
|
||||
METHODS = [
|
||||
('PACC', PACC(), {}),
|
||||
('EMQ', EMQ(), {}),
|
||||
('KDEy-ML', KDEyML(), {}),
|
||||
]
|
||||
|
||||
TRANSDUCTIVE_METHODS = [
|
||||
('LSQ', LocalStackingQuantification(EMQ()), {}),
|
||||
('LSQ2', LocalStackingQuantification2(EMQ()), {}),
|
||||
('LSQ-torch', LocalStackingQuantification3(EMQ()), {})
|
||||
]
|
||||
|
||||
def show_results(result_path):
|
||||
import pandas as pd
|
||||
df = pd.read_csv(result_path + '.csv', sep='\t')
|
||||
pd.set_option('display.max_columns', None)
|
||||
pd.set_option('display.max_rows', None)
|
||||
pd.set_option('display.width', 1000) # Ajustar el ancho máximo
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE"], margins=True)
|
||||
print(pv)
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["MRAE"], margins=True)
|
||||
print(pv)
|
||||
# pv = df.pivot_table(index='Dataset', columns="Method", values=["KLD"], margins=True)
|
||||
# print(pv)
|
||||
# pv = df.pivot_table(index='Dataset', columns="Method", values=["TR-TIME"], margins=True)
|
||||
# print(pv)
|
||||
# pv = df.pivot_table(index='Dataset', columns="Method", values=["TE-TIME"], margins=True)
|
||||
# print(pv)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
qp.environ['SAMPLE_SIZE'] = 500
|
||||
qp.environ['N_JOBS'] = -1
|
||||
n_bags_val = 25
|
||||
n_bags_test = 100
|
||||
result_dir = f'results_quantification/localstack'
|
||||
|
||||
os.makedirs(result_dir, exist_ok=True)
|
||||
|
||||
global_result_path = f'{result_dir}/allmethods'
|
||||
with open(global_result_path + '.csv', 'wt') as csv:
|
||||
csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\tTR-TIME\tTE-TIME\n')
|
||||
|
||||
for method_name, quantifier, param_grid in METHODS + TRANSDUCTIVE_METHODS:
|
||||
|
||||
with open(global_result_path + '.csv', 'at') as csv:
|
||||
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS:
|
||||
|
||||
local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe')
|
||||
|
||||
if os.path.exists(local_result_path):
|
||||
# print(f'result file {local_result_path} already exist; skipping')
|
||||
report = qp.util.load_report(local_result_path)
|
||||
|
||||
means = report.mean(numeric_only=True)
|
||||
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n')
|
||||
csv.flush()
|
||||
|
||||
show_results(global_result_path)
|
||||
|
|
@ -14,7 +14,7 @@ from . import model_selection
|
|||
from . import classification
|
||||
import os
|
||||
|
||||
__version__ = '0.1.9'
|
||||
__version__ = '0.1.10'
|
||||
|
||||
environ = {
|
||||
'SAMPLE_SIZE': None,
|
||||
|
|
|
|||
|
|
@ -502,7 +502,7 @@ class Dataset:
|
|||
return len(self.vocabulary)
|
||||
|
||||
@property
|
||||
def train_test(self):
|
||||
def train_test(self) -> (LabelledCollection, LabelledCollection):
|
||||
"""
|
||||
Alias to `self.training` and `self.test`
|
||||
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@ from contextlib import contextmanager
|
|||
import zipfile
|
||||
from os.path import join
|
||||
import pandas as pd
|
||||
import sklearn.datasets
|
||||
from ucimlrepo import fetch_ucirepo
|
||||
from quapy.data.base import Dataset, LabelledCollection
|
||||
from quapy.data.preprocessing import text2tfidf, reduce_columns
|
||||
|
|
@ -1004,3 +1005,49 @@ def fetch_IFCB(single_sample_train=True, for_model_selection=False, data_home=No
|
|||
return train, test_gen
|
||||
else:
|
||||
return train_gen, test_gen
|
||||
|
||||
|
||||
def syntheticUniformLabelledCollection(n_samples, n_features, n_classes, n_clusters_per_class=1, **kwargs):
|
||||
"""
|
||||
Generates a synthetic labelled collection with uniform priors and
|
||||
of `n_samples` instances, `n_features` features, and `n_classes` classes.
|
||||
The underlying generator relies on the function
|
||||
`sklearn.datasets.make_classification`. Other options can be specified using the `kwargs`;
|
||||
see the `scikit-learn documentation
|
||||
<https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html>`_
|
||||
for a full list of optional parameters.
|
||||
|
||||
:param n_samples: number of instances
|
||||
:param n_features: number of features
|
||||
:param n_classes: number of classes
|
||||
"""
|
||||
X, y = sklearn.datasets.make_classification(
|
||||
n_samples=n_samples,
|
||||
n_features=n_features,
|
||||
n_classes=n_classes,
|
||||
n_clusters_per_class=n_clusters_per_class,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
return LabelledCollection(X, y)
|
||||
|
||||
def syntheticUniformDataset(n_samples, n_features, n_classes, test_split=0.3, **kwargs):
|
||||
"""
|
||||
Generates a synthetic Dataset with approximately uniform priors and
|
||||
of `n_samples` instances, `n_features` features, and `n_classes` classes.
|
||||
The underlying generator relies on the function
|
||||
`sklearn.datasets.make_classification`. Other options can be specified using the `kwargs`;
|
||||
see the `scikit-learn documentation
|
||||
<https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html>`_
|
||||
for a full list of optional parameters.
|
||||
|
||||
:param n_samples: number of instances
|
||||
:param n_features: number of features
|
||||
:param n_classes: number of classes
|
||||
:param test_split: proportion of test instances
|
||||
"""
|
||||
assert 0. < test_split < 1., "invalid proportion of test instances; the value must be in (0, 1)"
|
||||
lc = syntheticUniformLabelledCollection(n_samples, n_features, n_classes, **kwargs)
|
||||
training, test = lc.split_stratified(train_prop=1-test_split, random_state=kwargs.get('random_state', None))
|
||||
dataset = Dataset(training=training, test=test, name=f'synthetic(nF={n_features},nC={n_classes})')
|
||||
return dataset
|
||||
|
|
@ -66,11 +66,13 @@ class KDEBase:
|
|||
"""
|
||||
class_cond_X = []
|
||||
for cat in classes:
|
||||
selX = X[y==cat]
|
||||
if selX.size==0:
|
||||
selX = X[y == cat]
|
||||
if selX.size == 0:
|
||||
selX = [F.uniform_prevalence(len(classes))]
|
||||
class_cond_X.append(selX)
|
||||
return [self.get_kde_function(X_cond_yi, bandwidth) for X_cond_yi in class_cond_X]
|
||||
if isinstance(bandwidth, float) or isinstance(bandwidth, str):
|
||||
bandwidth = np.full(fill_value=bandwidth, shape=(len(classes),))
|
||||
return [self.get_kde_function(X_cond_yi, band_i) for X_cond_yi, band_i in zip(class_cond_X, bandwidth)]
|
||||
|
||||
|
||||
class KDEyML(AggregativeSoftQuantifier, KDEBase):
|
||||
|
|
@ -188,7 +190,7 @@ class KDEyHD(AggregativeSoftQuantifier, KDEBase):
|
|||
|
||||
def __init__(self, classifier: BaseEstimator=None, val_split=5, divergence: str='HD',
|
||||
bandwidth=0.1, random_state=None, montecarlo_trials=10000):
|
||||
|
||||
|
||||
self.classifier = qp._get_classifier(classifier)
|
||||
self.val_split = val_split
|
||||
self.divergence = divergence
|
||||
|
|
@ -218,7 +220,7 @@ class KDEyHD(AggregativeSoftQuantifier, KDEBase):
|
|||
|
||||
def f_squared_hellinger(u):
|
||||
return (np.sqrt(u)-1)**2
|
||||
|
||||
|
||||
# todo: this will fail when self.divergence is a callable, and is not the right place to do it anyway
|
||||
if self.divergence.lower() == 'hd':
|
||||
f = f_squared_hellinger
|
||||
|
|
@ -283,7 +285,7 @@ class KDEyCS(AggregativeSoftQuantifier):
|
|||
|
||||
def gram_matrix_mix_sum(self, X, Y=None):
|
||||
# this adapts the output of the rbf_kernel function (pairwise evaluations of Gaussian kernels k(x,y))
|
||||
# to contain pairwise evaluations of N(x|mu,Sigma1+Sigma2) with mu=y and Sigma1 and Sigma2 are
|
||||
# to contain pairwise evaluations of N(x|mu,Sigma1+Sigma2) with mu=y and Sigma1 and Sigma2 are
|
||||
# two "scalar matrices" (h^2)*I each, so Sigma1+Sigma2 has scalar 2(h^2) (h is the bandwidth)
|
||||
h = self.bandwidth
|
||||
variance = 2 * (h**2)
|
||||
|
|
@ -342,7 +344,7 @@ class KDEyCS(AggregativeSoftQuantifier):
|
|||
# at each iteration of the optimization phase)
|
||||
tr_te_sums = np.zeros(shape=n, dtype=float)
|
||||
for i in range(n):
|
||||
tr_te_sums[i] = self.gram_matrix_mix_sum(Ptr[y==i], Pte)
|
||||
tr_te_sums[i] = self.gram_matrix_mix_sum(Ptr[y==i], Pte)
|
||||
|
||||
def divergence(alpha):
|
||||
# called \overline{r} in the paper
|
||||
|
|
|
|||
|
|
@ -0,0 +1 @@
|
|||
Subproject commit c223c9f1fe3c9708e8c5a5c56e438cdaaa857be4
|
||||
Loading…
Reference in New Issue