Compare commits
26 Commits
|
@ -143,8 +143,7 @@ LeQua2022
|
|||
MultiLabel
|
||||
NewMethods
|
||||
Ordinal
|
||||
Retrieval
|
||||
eDiscovery
|
||||
Archived/eDiscovery
|
||||
poster-cikm
|
||||
slides-cikm
|
||||
slides-short-cikm
|
||||
|
@ -153,9 +152,4 @@ svm_perf_quantification/svm_struct
|
|||
svm_perf_quantification/svm_light
|
||||
TweetSentQuant
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
*.png
|
||||
|
|
|
@ -1,3 +1,9 @@
|
|||
Change Log 0.1.9
|
||||
----------------
|
||||
|
||||
<...>
|
||||
|
||||
|
||||
Change Log 0.1.8
|
||||
----------------
|
||||
|
||||
|
|
|
@ -0,0 +1,84 @@
|
|||
import itertools
|
||||
import os.path
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.svm import LinearSVC
|
||||
|
||||
import quapy as qp
|
||||
from Retrieval.commons import RetrievedSamples, load_sample
|
||||
from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as Naive
|
||||
from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC, KDEyML
|
||||
from quapy.data.base import LabelledCollection
|
||||
|
||||
from os.path import join
|
||||
from tqdm import tqdm
|
||||
|
||||
from result_table.src.table import Table
|
||||
|
||||
"""
|
||||
|
||||
"""
|
||||
|
||||
data_home = 'data'
|
||||
|
||||
datasets = ['continent', 'gender', 'years_category', 'relative_pageviews_category', 'num_sitelinks_category']
|
||||
|
||||
param_grid = {'C': np.logspace(-4, 4, 9), 'class_weight': ['balanced', None]}
|
||||
|
||||
classifiers = [
|
||||
('LR', LogisticRegression(max_iter=5000), param_grid),
|
||||
('SVM', LinearSVC(), param_grid)
|
||||
]
|
||||
|
||||
def benchmark_name(class_name):
|
||||
return class_name.replace('_', '\_')
|
||||
|
||||
table = Table(name=f'accuracy', benchmarks=[benchmark_name(d) for d in datasets])
|
||||
table.format.show_std = False
|
||||
table.format.stat_test = None
|
||||
table.format.lower_is_better = False
|
||||
table.format.color = False
|
||||
table.format.remove_zero = True
|
||||
table.format.style = 'rules'
|
||||
|
||||
for class_name, (cls_name, cls, grid) in itertools.product(datasets, classifiers):
|
||||
|
||||
train_data_path = join(data_home, class_name, 'FULL', 'classifier_training.json') # <-------- fixed classifier
|
||||
|
||||
texts, labels = load_sample(train_data_path, class_name=class_name)
|
||||
|
||||
tfidf = TfidfVectorizer(sublinear_tf=True, min_df=3)
|
||||
Xtr = tfidf.fit_transform(texts)
|
||||
print(f'Xtr shape={Xtr.shape}')
|
||||
|
||||
print('training classifier...', end='')
|
||||
classifier = GridSearchCV(
|
||||
cls,
|
||||
param_grid=grid,
|
||||
n_jobs=-1,
|
||||
cv=5,
|
||||
verbose=10
|
||||
)
|
||||
classifier.fit(Xtr, labels)
|
||||
classifier_acc = classifier.best_score_
|
||||
classifier_acc_per_fold = classifier.cv_results_['mean_test_score'][classifier.best_index_]
|
||||
|
||||
print(f'[done] best-params={classifier.best_params_} got {classifier_acc:.4f} score, per fold {classifier_acc_per_fold}')
|
||||
|
||||
table.add(benchmark=benchmark_name(class_name), method=cls_name, v=classifier_acc_per_fold)
|
||||
|
||||
Table.LatexPDF(f'./latex/classifier_Acc.pdf', tables=[table])
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,153 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
from glob import glob
|
||||
from os.path import join
|
||||
|
||||
import quapy.functional as F
|
||||
|
||||
|
||||
Ks = [50, 100, 500, 1000]
|
||||
|
||||
CLASS_NAMES = ['continent', 'gender', 'years_category'] # ['relative_pageviews_category', 'num_sitelinks_category']:
|
||||
|
||||
DATA_SIZES = ['10K', '50K', '100K', '500K', '1M', 'FULL']
|
||||
|
||||
protected_group = {
|
||||
'gender': 'Female',
|
||||
'continent': 'Africa',
|
||||
'years_category': 'Pre-1900s',
|
||||
}
|
||||
|
||||
|
||||
def load_sample(path, class_name):
|
||||
"""
|
||||
Loads a sample json as a dataframe and returns text and labels for
|
||||
the given class_name
|
||||
|
||||
:param path: path to a json file
|
||||
:param class_name: string representing the target class
|
||||
:return: texts, labels for class_name
|
||||
"""
|
||||
df = pd.read_json(path)
|
||||
text = df.text.values
|
||||
labels = df[class_name].values
|
||||
return text, labels
|
||||
|
||||
|
||||
def binarize_labels(labels, positive_class=None):
|
||||
if positive_class is not None:
|
||||
protected_labels = labels==positive_class
|
||||
labels[protected_labels] = 1
|
||||
labels[~protected_labels] = 0
|
||||
labels = labels.astype(int)
|
||||
return labels
|
||||
|
||||
|
||||
class RetrievedSamples:
|
||||
def __init__(self,
|
||||
class_home: str,
|
||||
test_rankings_path: str,
|
||||
test_query_prevs_path: str,
|
||||
vectorizer,
|
||||
class_name,
|
||||
positive_class=None,
|
||||
classes=None,
|
||||
):
|
||||
self.class_home = class_home
|
||||
self.test_rankings_df = pd.read_json(test_rankings_path)
|
||||
self.test_query_prevs_df = pd.read_json(test_query_prevs_path)
|
||||
self.vectorizer = vectorizer
|
||||
self.class_name = class_name
|
||||
self.positive_class = positive_class
|
||||
self.classes = classes
|
||||
|
||||
def get_text_label_score(self, df, filter_rank=1000):
|
||||
df = df[df['rank']<filter_rank]
|
||||
|
||||
class_name = self.class_name
|
||||
vectorizer = self.vectorizer
|
||||
filter_classes = self.classes
|
||||
|
||||
text = df.text.values
|
||||
labels = df[class_name].values
|
||||
rel_score = df.score.values
|
||||
|
||||
labels = binarize_labels(labels, self.positive_class)
|
||||
|
||||
if filter_classes is not None:
|
||||
idx = np.isin(labels, filter_classes)
|
||||
text = text[idx]
|
||||
labels = labels[idx]
|
||||
rel_score = rel_score[idx]
|
||||
|
||||
if vectorizer is not None:
|
||||
text = vectorizer.transform(text)
|
||||
|
||||
order = np.argsort(-rel_score)
|
||||
return text[order], labels[order], rel_score[order]
|
||||
|
||||
def __call__(self):
|
||||
tests_df = self.test_rankings_df
|
||||
class_name = self.class_name
|
||||
|
||||
for file in self._list_queries():
|
||||
|
||||
# loads the training sample
|
||||
train_df = pd.read_json(file)
|
||||
if len(train_df) == 0:
|
||||
print('empty dataframe: ', file)
|
||||
else:
|
||||
Xtr, ytr, score_tr = self.get_text_label_score(train_df)
|
||||
|
||||
# loads the test sample
|
||||
query_id = self._get_query_id_from_path(file)
|
||||
sel_df = tests_df[tests_df.qid == query_id]
|
||||
Xte, yte, score_te = self.get_text_label_score(sel_df)
|
||||
|
||||
# gets the prevalence of all judged relevant documents for the query
|
||||
df = self.test_query_prevs_df
|
||||
q_rel_prevs = df.loc[df.id == query_id][class_name+'_proportions'].values[0]
|
||||
|
||||
if self.positive_class is not None:
|
||||
if self.positive_class not in q_rel_prevs:
|
||||
print(f'positive class {self.positive_class} not found in the query; skipping')
|
||||
continue
|
||||
q_rel_prevs = F.as_binary_prevalence(q_rel_prevs[self.positive_class])
|
||||
else:
|
||||
q_rel_prevs = np.asarray([q_rel_prevs.get(class_i, 0.) for class_i in self.classes])
|
||||
|
||||
yield (Xtr, ytr, score_tr), (Xte, yte, score_te), q_rel_prevs
|
||||
|
||||
def _list_queries(self):
|
||||
return sorted(glob(join(self.class_home, 'training_Query*200SPLIT.json')))
|
||||
|
||||
# def _get_test_sample(self, query_id, max_lines=-1):
|
||||
# df = self.test_rankings_df
|
||||
# sel_df = df[df.qid==int(query_id)]
|
||||
# return get_text_label_score(sel_df)
|
||||
# texts = sel_df.text.values
|
||||
# try:
|
||||
# labels = sel_df[self.class_name].values
|
||||
# except KeyError as e:
|
||||
# print(f'error: key {self.class_name} not found in test rankings')
|
||||
# raise e
|
||||
# if max_lines > 0 and len(texts) > max_lines:
|
||||
# ranks = sel_df.rank.values
|
||||
# idx = np.argsort(ranks)[:max_lines]
|
||||
# texts = np.asarray(texts)[idx]
|
||||
# labels = np.asarray(labels)[idx]
|
||||
# return texts, labels
|
||||
|
||||
def total(self):
|
||||
return len(self._list_queries())
|
||||
|
||||
def _get_query_id_from_path(self, path):
|
||||
prefix = 'training_Query-'
|
||||
posfix = 'Sample-200SPLIT'
|
||||
qid = path
|
||||
qid = qid[:qid.index(posfix)]
|
||||
qid = qid[qid.index(prefix) + len(prefix):]
|
||||
qid = int(qid)
|
||||
return qid
|
||||
|
||||
|
|
@ -0,0 +1,182 @@
|
|||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.svm import LinearSVC
|
||||
|
||||
import quapy as qp
|
||||
import quapy.functional as F
|
||||
from Retrieval.commons import RetrievedSamples, load_txt_sample, load_json_sample
|
||||
from Retrieval.tabular import Table
|
||||
from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation
|
||||
from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC, KDEyML
|
||||
from quapy.protocol import AbstractProtocol
|
||||
from quapy.data.base import LabelledCollection
|
||||
|
||||
from glob import glob
|
||||
from os.path import join
|
||||
from tqdm import tqdm
|
||||
|
||||
"""
|
||||
In this fifth experiment, we have pairs of (Li,Ui) with Li a training set and Ui a test set as
|
||||
in the fourth experiment, and the fairness group are defined upon geographic info as in the fourth case.
|
||||
As in the fourth, the data Li and Ui have been drawn by retrieving query-related documents from
|
||||
a pool of the same size. Unlike the fourth experiment, here the training queries are
|
||||
|
||||
Por ahora 1000 en tr y 100 en test
|
||||
Parece que ahora hay muy poco shift
|
||||
"""
|
||||
|
||||
|
||||
def cls(classifier_trained=None):
|
||||
if classifier_trained is None:
|
||||
# return LinearSVC()
|
||||
return LogisticRegression()
|
||||
else:
|
||||
return classifier_trained
|
||||
|
||||
|
||||
def methods(classifier_trained=None):
|
||||
yield ('CC', ClassifyAndCount(cls(classifier_trained)))
|
||||
yield ('PCC', PCC(cls(classifier_trained)))
|
||||
yield ('ACC', ACC(cls(classifier_trained), val_split=5, n_jobs=-1))
|
||||
yield ('PACC', PACC(cls(classifier_trained), val_split=5, n_jobs=-1))
|
||||
yield ('EMQ', EMQ(cls(classifier_trained), exact_train_prev=True))
|
||||
yield ('EMQh', EMQ(cls(classifier_trained), exact_train_prev=False))
|
||||
# yield ('EMQ-BCTS', EMQ(cls(classifier_trained), exact_train_prev=False, recalib='bcts'))
|
||||
# yield ('EMQ-TS', EMQ(cls(classifier_trained), exact_train_prev=False, recalib='ts'))
|
||||
# yield ('EMQ-NBVS', EMQ(cls(classifier_trained), exact_train_prev=False, recalib='nbvs'))
|
||||
# yield ('EMQ-VS', EMQ(cls(classifier_trained), exact_train_prev=False, recalib='vs'))
|
||||
# yield ('KDE001', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.001))
|
||||
# yield ('KDE005', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.005)) # <-- wow!
|
||||
# yield ('KDE01', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.01))
|
||||
# yield ('KDE02', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.02))
|
||||
# yield ('KDE03', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.03))
|
||||
# yield ('KDE05', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.05))
|
||||
yield ('KDE07', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.07))
|
||||
# yield ('KDE10', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.10))
|
||||
yield ('MLPE', MaximumLikelihoodPrevalenceEstimation())
|
||||
|
||||
|
||||
def train_classifier():
|
||||
tfidf = TfidfVectorizer(sublinear_tf=True, min_df=10)
|
||||
training = LabelledCollection.load(train_path, loader_func=load_json_sample, class_name=CLASS_NAME)
|
||||
|
||||
if REDUCE_TR > 0 and len(training) > REDUCE_TR:
|
||||
print('Reducing the number of documents in the training to', REDUCE_TR)
|
||||
training = training.sampling(REDUCE_TR, *training.prevalence())
|
||||
|
||||
Xtr, ytr = training.Xy
|
||||
Xtr = tfidf.fit_transform(Xtr)
|
||||
print('L orig shape = ', Xtr.shape)
|
||||
|
||||
training = LabelledCollection(Xtr, ytr)
|
||||
|
||||
print('training classifier')
|
||||
classifier_trained = LogisticRegression()
|
||||
classifier_trained = GridSearchCV(classifier_trained,
|
||||
param_grid={'C': np.logspace(-3, 3, 7), 'class_weight': ['balanced', None]},
|
||||
n_jobs=-1, cv=5)
|
||||
classifier_trained.fit(Xtr, ytr)
|
||||
classifier_trained = classifier_trained.best_estimator_
|
||||
trained = True
|
||||
print('[Done!]')
|
||||
|
||||
classes = training.classes_
|
||||
|
||||
print('training classes:', classes)
|
||||
print('training prevalence:', training.prevalence())
|
||||
|
||||
return tfidf, classifier_trained
|
||||
|
||||
|
||||
def reduceAtK(data: LabelledCollection, k):
|
||||
X, y = data.Xy
|
||||
X = X[:k]
|
||||
y = y[:k]
|
||||
return LabelledCollection(X, y, classes=data.classes_)
|
||||
|
||||
|
||||
RANK_AT_K = -1
|
||||
REDUCE_TR = 50000
|
||||
qp.environ['SAMPLE_SIZE'] = RANK_AT_K
|
||||
|
||||
|
||||
def scape_latex(string):
|
||||
return string.replace('_', '\_')
|
||||
|
||||
|
||||
Ks = [10, 50, 100, 250, 500, 1000, 2000]
|
||||
# Ks = [500]
|
||||
|
||||
for CLASS_NAME in ['gender_category'] : #'years_category']: #['continent', 'first_letter_category']: #, 'gender', 'gender_category', 'occupations', 'source_countries', 'source_subcont_regions', 'years_category', 'relative_pageviews_category']:
|
||||
|
||||
data_path = './' + CLASS_NAME
|
||||
|
||||
if CLASS_NAME in ['years_category', 'continent', 'gender_category']:
|
||||
train_path = join(data_path, 'train500PerGroup.json')
|
||||
else:
|
||||
train_path = join(data_path, 'train3000samples.json')
|
||||
|
||||
tfidf, classifier_trained = qp.util.pickled_resource(f'classifier_{CLASS_NAME}.pkl', train_classifier)
|
||||
trained=True
|
||||
|
||||
experiment_prot = RetrievedSamples(data_path,
|
||||
load_fn=load_json_sample,
|
||||
vectorizer=tfidf,
|
||||
max_train_lines=None,
|
||||
max_test_lines=RANK_AT_K, classes=classifier_trained.classes_, class_name=CLASS_NAME)
|
||||
|
||||
method_names = [name for name, *other in methods()]
|
||||
benchmarks = [f'{scape_latex(CLASS_NAME)}@{k}' for k in Ks]
|
||||
table_mae = Table(benchmarks, method_names, color_mode='global')
|
||||
table_mrae = Table(benchmarks, method_names, color_mode='global')
|
||||
|
||||
for method_name, quantifier in methods(classifier_trained):
|
||||
# print('Starting with method=', method_name)
|
||||
|
||||
mae_errors = {k:[] for k in Ks}
|
||||
mrae_errors = {k:[] for k in Ks}
|
||||
|
||||
pbar = tqdm(experiment_prot(), total=49)
|
||||
for train, test in pbar:
|
||||
if train is not None:
|
||||
try:
|
||||
if trained and method_name!='MLPE':
|
||||
quantifier.fit(train, val_split=train, fit_classifier=False)
|
||||
else:
|
||||
quantifier.fit(train)
|
||||
|
||||
for k in Ks:
|
||||
test_k = reduceAtK(test, k)
|
||||
estim_prev = quantifier.quantify(test_k.instances)
|
||||
|
||||
mae_errors[k].append(qp.error.mae(test_k.prevalence(), estim_prev))
|
||||
mrae_errors[k].append(qp.error.mrae(test_k.prevalence(), estim_prev, eps=(1./(2*k))))
|
||||
|
||||
except Exception as e:
|
||||
print(f'wow, something happened here! skipping; {e}')
|
||||
else:
|
||||
print('skipping one!')
|
||||
|
||||
# pbar.set_description(f'{method_name}\tmae={np.mean(mae_errors):.4f}\tmrae={np.mean(mrae_errors):.4f}')
|
||||
pbar.set_description(f'{method_name}')
|
||||
|
||||
for k in Ks:
|
||||
|
||||
table_mae.add(benchmark=f'{scape_latex(CLASS_NAME)}@{k}', method=method_name, values=mae_errors[k])
|
||||
table_mrae.add(benchmark=f'{scape_latex(CLASS_NAME)}@{k}', method=method_name, values=mrae_errors[k])
|
||||
|
||||
table_mae.latexPDF('./latex', f'table_{CLASS_NAME}_mae.tex')
|
||||
table_mrae.latexPDF('./latex', f'table_{CLASS_NAME}_mrae.tex')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,161 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.svm import LinearSVC
|
||||
|
||||
import quapy as qp
|
||||
import quapy.functional as F
|
||||
from Retrieval.commons import RetrievedSamples, load_txt_sample
|
||||
from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation
|
||||
from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC, KDEyML
|
||||
from quapy.protocol import AbstractProtocol
|
||||
from quapy.data.base import LabelledCollection
|
||||
|
||||
from glob import glob
|
||||
from os.path import join
|
||||
from tqdm import tqdm
|
||||
|
||||
"""
|
||||
In this fourth experiment, we have pairs of (Li,Ui) with Li a training set and Ui a test set as
|
||||
in the third experiment, and the fairness group are defined upon geographic info as in the third case.
|
||||
The difference here is that the data Li and Ui have been drawn by retrieving query-related documents from
|
||||
a pool of the same size.
|
||||
|
||||
Por ahora 1000 en tr y 100 en test
|
||||
Parece que ahora hay muy poco shift
|
||||
"""
|
||||
|
||||
def cls(classifier_trained=None):
|
||||
if classifier_trained is None:
|
||||
# return LinearSVC()
|
||||
return LogisticRegression()
|
||||
else:
|
||||
return classifier_trained
|
||||
|
||||
|
||||
def methods(classifier_trained=None):
|
||||
yield ('CC', ClassifyAndCount(cls(classifier_trained)))
|
||||
yield ('PACC', PACC(cls(classifier_trained), val_split=5, n_jobs=-1))
|
||||
yield ('EMQ', EMQ(cls(classifier_trained), exact_train_prev=True))
|
||||
yield ('EMQh', EMQ(cls(classifier_trained), exact_train_prev=False))
|
||||
yield ('EMQ-BCTS', EMQ(cls(classifier_trained), exact_train_prev=False, recalib='bcts'))
|
||||
yield ('EMQ-TS', EMQ(cls(classifier_trained), exact_train_prev=False, recalib='ts'))
|
||||
yield ('EMQ-NBVS', EMQ(cls(classifier_trained), exact_train_prev=False, recalib='nbvs'))
|
||||
# yield ('EMQ-VS', EMQ(cls(classifier_trained), exact_train_prev=False, recalib='vs'))
|
||||
yield ('PCC', PCC(cls(classifier_trained)))
|
||||
yield ('ACC', ACC(cls(classifier_trained), val_split=5, n_jobs=-1))
|
||||
yield ('KDE001', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.001))
|
||||
yield ('KDE005', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.005)) # <-- wow!
|
||||
yield ('KDE01', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.01))
|
||||
yield ('KDE02', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.02))
|
||||
yield ('KDE03', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.03))
|
||||
yield ('KDE05', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.05))
|
||||
yield ('KDE07', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.07))
|
||||
yield ('KDE10', KDEyML(cls(classifier_trained), val_split=5, n_jobs=-1, bandwidth=0.10))
|
||||
yield ('MLPE', MaximumLikelihoodPrevalenceEstimation())
|
||||
|
||||
|
||||
def train_classifier():
|
||||
tfidf = TfidfVectorizer(sublinear_tf=True, min_df=10)
|
||||
training = LabelledCollection.load(train_path, loader_func=load_txt_sample, verbose=True, parse_columns=False)
|
||||
|
||||
if REDUCE_TR > 0:
|
||||
print('Reducing the number of documents in the training to', REDUCE_TR)
|
||||
training = training.sampling(REDUCE_TR, *training.prevalence())
|
||||
|
||||
Xtr, ytr = training.Xy
|
||||
Xtr = tfidf.fit_transform(Xtr)
|
||||
print('L orig shape = ', Xtr.shape)
|
||||
|
||||
training = LabelledCollection(Xtr, ytr)
|
||||
|
||||
print('training classifier')
|
||||
classifier_trained = LogisticRegression()
|
||||
classifier_trained = GridSearchCV(classifier_trained,
|
||||
param_grid={'C': np.logspace(-3, 3, 7), 'class_weight': ['balanced', None]},
|
||||
n_jobs=-1, cv=5)
|
||||
classifier_trained.fit(Xtr, ytr)
|
||||
classifier_trained = classifier_trained.best_estimator_
|
||||
trained = True
|
||||
print('[Done!]')
|
||||
|
||||
classes = training.classes_
|
||||
|
||||
print('training classes:', classes)
|
||||
print('training prevalence:', training.prevalence())
|
||||
|
||||
return tfidf, classifier_trained
|
||||
|
||||
|
||||
|
||||
RANK_AT_K = 1000
|
||||
REDUCE_TR = 50000
|
||||
qp.environ['SAMPLE_SIZE'] = RANK_AT_K
|
||||
|
||||
data_path = './50_50_split_trec'
|
||||
train_path = join(data_path, 'train_50_50_continent.txt')
|
||||
|
||||
tfidf, classifier_trained = qp.util.pickled_resource('classifier.pkl', train_classifier)
|
||||
trained=True
|
||||
|
||||
experiment_prot = RetrievedSamples(data_path,
|
||||
load_fn=load_txt_sample,
|
||||
vectorizer=tfidf,
|
||||
max_train_lines=None,
|
||||
max_test_lines=RANK_AT_K, classes=classifier_trained.classes_)
|
||||
|
||||
result_mae_dict = {}
|
||||
result_mrae_dict = {}
|
||||
for method_name, quantifier in methods(classifier_trained):
|
||||
# print('Starting with method=', method_name)
|
||||
|
||||
mae_errors = []
|
||||
mrae_errors = []
|
||||
pbar = tqdm(experiment_prot(), total=49)
|
||||
for train, test in pbar:
|
||||
if train is not None:
|
||||
try:
|
||||
|
||||
# print(train.prevalence())
|
||||
# print(test.prevalence())
|
||||
if trained and method_name!='MLPE':
|
||||
quantifier.fit(train, val_split=train, fit_classifier=False)
|
||||
else:
|
||||
quantifier.fit(train)
|
||||
estim_prev = quantifier.quantify(test.instances)
|
||||
|
||||
mae = qp.error.mae(test.prevalence(), estim_prev)
|
||||
mae_errors.append(mae)
|
||||
|
||||
mrae = qp.error.mrae(test.prevalence(), estim_prev)
|
||||
mrae_errors.append(mrae)
|
||||
|
||||
# print()
|
||||
# print('Training prevalence:', F.strprev(train.prevalence()), 'shape', train.X.shape)
|
||||
# print('Test prevalence:', F.strprev(test.prevalence()), 'shape', test.X.shape)
|
||||
# print('Estim prevalence:', F.strprev(estim_prev))
|
||||
|
||||
except Exception as e:
|
||||
print(f'wow, something happened here! skipping; {e}')
|
||||
else:
|
||||
print('skipping one!')
|
||||
|
||||
pbar.set_description(f'{method_name}\tmae={np.mean(mae_errors):.4f}\tmrae={np.mean(mrae_errors):.4f}')
|
||||
print()
|
||||
result_mae_dict[method_name] = np.mean(mae_errors)
|
||||
result_mrae_dict[method_name] = np.mean(mrae_errors)
|
||||
|
||||
print('Results\n'+('-'*100))
|
||||
for method_name in result_mae_dict.keys():
|
||||
MAE = result_mae_dict[method_name]
|
||||
MRAE = result_mrae_dict[method_name]
|
||||
print(f'{method_name}\t{MAE=:.5f}\t{MRAE=:.5f}')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,98 @@
|
|||
import pandas as pd
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
import quapy as qp
|
||||
import quapy.functional as F
|
||||
from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation
|
||||
from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC
|
||||
from quapy.protocol import AbstractProtocol
|
||||
from quapy.data.base import LabelledCollection
|
||||
|
||||
from glob import glob
|
||||
from os.path import join
|
||||
|
||||
"""
|
||||
This was the very first experiment. 1 big training set and many test rankings produced according to some queries.
|
||||
The quantification methods did not seem to work. The more sophisticated the method is, the worse it performed.
|
||||
This is a clear indication that the PPS assumptions do not hold.
|
||||
Actually, while the training set could be some iid sample from a distribution L and every test set
|
||||
is a iid sample from a distribution U, it is pretty clear that P(X|Y) is different, since the test set
|
||||
are biased towards a query term whereas the training set is not.
|
||||
"""
|
||||
|
||||
def methods():
|
||||
yield ('MLPE', MaximumLikelihoodPrevalenceEstimation())
|
||||
yield ('CC', ClassifyAndCount(LogisticRegression(n_jobs=-1)))
|
||||
yield ('ACC', ACC(LogisticRegression(n_jobs=-1)))
|
||||
yield ('PCC', PCC(LogisticRegression(n_jobs=-1)))
|
||||
yield ('PACC', PACC(LogisticRegression(n_jobs=-1)))
|
||||
yield ('EMQ', EMQ(LogisticRegression(n_jobs=-1)))
|
||||
|
||||
|
||||
def load_txt_sample(path, verbose=False):
|
||||
if verbose:
|
||||
print(f'loading {path}...', end='')
|
||||
df = pd.read_csv(path, sep='\t')
|
||||
if verbose:
|
||||
print('[done]')
|
||||
X = df['text']
|
||||
y = df['first_letter_category']
|
||||
|
||||
return X, y
|
||||
|
||||
class RetrievedSamples(AbstractProtocol):
|
||||
|
||||
def __init__(self, path_dir: str, load_fn, vectorizer, classes):
|
||||
self.path_dir = path_dir
|
||||
self.load_fn = load_fn
|
||||
self.vectorizer = vectorizer
|
||||
self.classes = classes
|
||||
|
||||
def __call__(self):
|
||||
for file in glob(join(self.path_dir, 'test_data_*.txt')):
|
||||
X, y = self.load_fn(file)
|
||||
if len(X)!=qp.environ['SAMPLE_SIZE']:
|
||||
print(f'[warning]: file {file} contains {len(X)} instances (expected: {qp.environ["SAMPLE_SIZE"]})')
|
||||
# assert len(X) == qp.environ['SAMPLE_SIZE'], f'unexpected sample size for file {file}, found {len(X)}'
|
||||
X = self.vectorizer.transform(X)
|
||||
sample = LabelledCollection(X, y, classes=self.classes)
|
||||
yield sample.Xp
|
||||
|
||||
|
||||
qp.environ['SAMPLE_SIZE']=100
|
||||
|
||||
data_path = './data'
|
||||
train_path = join(data_path, 'train_data.txt')
|
||||
|
||||
|
||||
tfidf = TfidfVectorizer(sublinear_tf=True, min_df=5)
|
||||
|
||||
training = LabelledCollection.load(train_path, loader_func=load_txt_sample, verbose=True)
|
||||
|
||||
# training = training.sampling(1000)
|
||||
|
||||
Xtr, ytr = training.Xy
|
||||
Xtr = tfidf.fit_transform(Xtr)
|
||||
print('Xtr shape = ', Xtr.shape)
|
||||
|
||||
training = LabelledCollection(Xtr, ytr)
|
||||
classes = training.classes_
|
||||
|
||||
test_prot = RetrievedSamples(data_path, load_fn=load_txt_sample, vectorizer=tfidf, classes=classes)
|
||||
|
||||
print('Training prevalence:', F.strprev(training.prevalence()))
|
||||
for X, p in test_prot():
|
||||
print('Test prevalence:', F.strprev(p))
|
||||
|
||||
for method_name, quantifier in methods():
|
||||
print('training ', method_name)
|
||||
quantifier.fit(training)
|
||||
print('[done]')
|
||||
|
||||
report = qp.evaluation.evaluation_report(quantifier, test_prot, error_metrics=['mae', 'mrae'], verbose=True)
|
||||
|
||||
print(report.mean())
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,131 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
import quapy as qp
|
||||
import quapy.functional as F
|
||||
from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation
|
||||
from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC
|
||||
from quapy.protocol import AbstractProtocol
|
||||
from quapy.data.base import LabelledCollection
|
||||
|
||||
from glob import glob
|
||||
from os.path import join
|
||||
from tqdm import tqdm
|
||||
|
||||
"""
|
||||
In this second experiment, we have pairs of (Li,Ui) with Li a training set and Ui a test set.
|
||||
Both elements in the pair are *retrieved according to the same query*. This is a way to impose
|
||||
the same type of bias that was present in the test, to the training set. Let's see...
|
||||
"""
|
||||
|
||||
def methods():
|
||||
yield ('PACC', PACC(LogisticRegression(), val_split=5, n_jobs=-1))
|
||||
yield ('CC', ClassifyAndCount(LogisticRegression()))
|
||||
yield ('EMQ', EMQ(LogisticRegression()))
|
||||
yield ('PCC', PCC(LogisticRegression()))
|
||||
yield ('ACC', ACC(LogisticRegression(), val_split=5, n_jobs=-1))
|
||||
yield ('MLPE', MaximumLikelihoodPrevalenceEstimation())
|
||||
|
||||
|
||||
def load_txt_sample(path, parse_columns, verbose=False, max_lines=None):
|
||||
if verbose:
|
||||
print(f'loading {path}...', end='')
|
||||
df = pd.read_csv(path, sep='\t')
|
||||
if verbose:
|
||||
print('[done]')
|
||||
X = df['text'].values
|
||||
y = df['first_letter_category'].values
|
||||
|
||||
if parse_columns:
|
||||
rank = df['rank'].values
|
||||
scores = df['score'].values
|
||||
order = np.argsort(rank)
|
||||
X = X[order]
|
||||
y = y[order]
|
||||
rank = rank[order]
|
||||
scores = scores[order]
|
||||
|
||||
if max_lines is not None:
|
||||
X = X[:max_lines]
|
||||
y = y[:max_lines]
|
||||
|
||||
return X, y
|
||||
|
||||
|
||||
class RetrievedSamples(AbstractProtocol):
|
||||
|
||||
def __init__(self, path_dir: str, load_fn, vectorizer, classes, max_train_lines=None, max_test_lines=None):
|
||||
self.path_dir = path_dir
|
||||
self.load_fn = load_fn
|
||||
self.vectorizer = vectorizer
|
||||
self.classes = classes
|
||||
self.max_train_lines = max_train_lines
|
||||
self.max_test_lines = max_test_lines
|
||||
|
||||
def __call__(self):
|
||||
for file in glob(join(self.path_dir, 'test_rankings_*.txt')):
|
||||
|
||||
X, y = self.load_fn(file.replace('test_', 'training_'), parse_columns=True, max_lines=self.max_train_lines)
|
||||
X = self.vectorizer.transform(X)
|
||||
train_sample = LabelledCollection(X, y, classes=self.classes)
|
||||
|
||||
X, y = self.load_fn(file, parse_columns=True, max_lines=self.max_test_lines)
|
||||
if len(X)!=qp.environ['SAMPLE_SIZE']:
|
||||
print(f'[warning]: file {file} contains {len(X)} instances (expected: {qp.environ["SAMPLE_SIZE"]})')
|
||||
# assert len(X) == qp.environ['SAMPLE_SIZE'], f'unexpected sample size for file {file}, found {len(X)}'
|
||||
X = self.vectorizer.transform(X)
|
||||
test_sample = LabelledCollection(X, y, classes=self.classes)
|
||||
|
||||
yield train_sample, test_sample
|
||||
|
||||
|
||||
RANK_AT_K = 500
|
||||
REDUCE_TR = 50000
|
||||
qp.environ['SAMPLE_SIZE'] = RANK_AT_K
|
||||
|
||||
data_path = './newCollection'
|
||||
train_path = join(data_path, 'train_data.txt')
|
||||
|
||||
tfidf = TfidfVectorizer(sublinear_tf=True, min_df=10)
|
||||
|
||||
training = LabelledCollection.load(train_path, loader_func=load_txt_sample, verbose=True, parse_columns=False)
|
||||
if REDUCE_TR>0:
|
||||
print('Reducing the number of documents in the training to', REDUCE_TR)
|
||||
training = training.sampling(REDUCE_TR)
|
||||
|
||||
Xtr, ytr = training.Xy
|
||||
Xtr = tfidf.fit_transform(Xtr)
|
||||
print('L orig shape = ', Xtr.shape)
|
||||
|
||||
training = LabelledCollection(Xtr, ytr)
|
||||
classes = training.classes_
|
||||
|
||||
experiment_prot = RetrievedSamples(data_path,
|
||||
load_fn=load_txt_sample,
|
||||
vectorizer=tfidf,
|
||||
classes=classes,
|
||||
max_train_lines=RANK_AT_K,
|
||||
max_test_lines=RANK_AT_K)
|
||||
|
||||
for method_name, quantifier in methods():
|
||||
print('Starting with method=', method_name)
|
||||
|
||||
errors = []
|
||||
pbar = tqdm(experiment_prot(), total=49)
|
||||
for train, test in pbar:
|
||||
# print('Training prevalence:', F.strprev(training.prevalence()), 'shape', train.X.shape)
|
||||
# print('Test prevalence:', F.strprev(test.prevalence()), 'shape', test.X.shape)
|
||||
|
||||
quantifier.fit(train)
|
||||
estim_prev = quantifier.quantify(test.instances)
|
||||
mae = qp.error.mae(test.prevalence(), estim_prev)
|
||||
errors.append(mae)
|
||||
|
||||
pbar.set_description(f'mae={np.mean(errors):.4f}')
|
||||
print()
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,155 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
import quapy as qp
|
||||
import quapy.functional as F
|
||||
from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation
|
||||
from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC
|
||||
from quapy.protocol import AbstractProtocol
|
||||
from quapy.data.base import LabelledCollection
|
||||
|
||||
from glob import glob
|
||||
from os.path import join
|
||||
from tqdm import tqdm
|
||||
|
||||
"""
|
||||
In this third experiment, we have pairs of (Li,Ui) with Li a training set and Ui a test set as
|
||||
in the second experiment, but in this case the fairness group are defined upon geographic info.
|
||||
"""
|
||||
|
||||
def methods():
|
||||
yield ('CC', ClassifyAndCount(LogisticRegression()))
|
||||
yield ('PACC', PACC(LogisticRegression(), val_split=5, n_jobs=-1))
|
||||
yield ('EMQ', EMQ(LogisticRegression()))
|
||||
yield ('PCC', PCC(LogisticRegression()))
|
||||
yield ('ACC', ACC(LogisticRegression(), val_split=5, n_jobs=-1))
|
||||
yield ('MLPE', MaximumLikelihoodPrevalenceEstimation())
|
||||
|
||||
|
||||
def load_txt_sample(path, parse_columns, verbose=False, max_lines=None):
|
||||
# print('reading', path)
|
||||
if verbose:
|
||||
print(f'loading {path}...', end='')
|
||||
df = pd.read_csv(path, sep='\t')
|
||||
if verbose:
|
||||
print('[done]')
|
||||
X = df['text'].values
|
||||
y = df['continent'].values
|
||||
|
||||
if parse_columns:
|
||||
rank = df['rank'].values
|
||||
scores = df['score'].values
|
||||
rank = rank[y != 'Antarctica']
|
||||
scores = scores[y != 'Antarctica']
|
||||
|
||||
X = X[y!='Antarctica']
|
||||
y = y[y!='Antarctica']
|
||||
|
||||
if parse_columns:
|
||||
order = np.argsort(rank)
|
||||
X = X[order]
|
||||
y = y[order]
|
||||
rank = rank[order]
|
||||
scores = scores[order]
|
||||
|
||||
if max_lines is not None:
|
||||
X = X[:max_lines]
|
||||
y = y[:max_lines]
|
||||
|
||||
return X, y
|
||||
|
||||
|
||||
class RetrievedSamples(AbstractProtocol):
|
||||
|
||||
def __init__(self, path_dir: str, load_fn, vectorizer, max_train_lines=None, max_test_lines=None):
|
||||
self.path_dir = path_dir
|
||||
self.load_fn = load_fn
|
||||
self.vectorizer = vectorizer
|
||||
self.max_train_lines = max_train_lines
|
||||
self.max_test_lines = max_test_lines
|
||||
|
||||
def __call__(self):
|
||||
for file in glob(join(self.path_dir, 'test_rankings_*.txt')):
|
||||
|
||||
X, y = self.load_fn(file.replace('test_', 'training_'), parse_columns=True, max_lines=self.max_train_lines)
|
||||
X = self.vectorizer.transform(X)
|
||||
train_sample = LabelledCollection(X, y)
|
||||
|
||||
X, y = self.load_fn(file, parse_columns=True, max_lines=self.max_test_lines)
|
||||
if len(X)!=qp.environ['SAMPLE_SIZE']:
|
||||
print(f'[warning]: file {file} contains {len(X)} instances (expected: {qp.environ["SAMPLE_SIZE"]})')
|
||||
# assert len(X) == qp.environ['SAMPLE_SIZE'], f'unexpected sample size for file {file}, found {len(X)}'
|
||||
X = self.vectorizer.transform(X)
|
||||
try:
|
||||
test_sample = LabelledCollection(X, y, classes=train_sample.classes_)
|
||||
except ValueError as e:
|
||||
print(f'file {file} caused error {e}')
|
||||
yield None, None
|
||||
|
||||
# print('train #classes:', train_sample.n_classes, train_sample.prevalence())
|
||||
# print('test #classes:', test_sample.n_classes, test_sample.prevalence())
|
||||
|
||||
yield train_sample, test_sample
|
||||
|
||||
|
||||
RANK_AT_K = 100
|
||||
REDUCE_TR = 50000
|
||||
qp.environ['SAMPLE_SIZE'] = RANK_AT_K
|
||||
|
||||
data_path = './newCollectionGeo'
|
||||
train_path = join(data_path, 'train_data_continent.txt')
|
||||
|
||||
tfidf = TfidfVectorizer(sublinear_tf=True, min_df=10)
|
||||
|
||||
training = LabelledCollection.load(train_path, loader_func=load_txt_sample, verbose=True, parse_columns=False)
|
||||
|
||||
if REDUCE_TR>0:
|
||||
print('Reducing the number of documents in the training to', REDUCE_TR)
|
||||
training = training.sampling(REDUCE_TR)
|
||||
|
||||
Xtr, ytr = training.Xy
|
||||
Xtr = tfidf.fit_transform(Xtr)
|
||||
print('L orig shape = ', Xtr.shape)
|
||||
|
||||
training = LabelledCollection(Xtr, ytr)
|
||||
classes = training.classes_
|
||||
|
||||
print('training classes:', classes)
|
||||
print('training prevalence:', training.prevalence())
|
||||
|
||||
experiment_prot = RetrievedSamples(data_path,
|
||||
load_fn=load_txt_sample,
|
||||
vectorizer=tfidf,
|
||||
max_train_lines=None,
|
||||
max_test_lines=RANK_AT_K)
|
||||
|
||||
for method_name, quantifier in methods():
|
||||
print('Starting with method=', method_name)
|
||||
|
||||
errors = []
|
||||
pbar = tqdm(experiment_prot(), total=49)
|
||||
for train, test in pbar:
|
||||
if train is not None:
|
||||
try:
|
||||
# print('Training prevalence:', F.strprev(training.prevalence()), 'shape', train.X.shape)
|
||||
# print('Test prevalence:', F.strprev(test.prevalence()), 'shape', test.X.shape)
|
||||
|
||||
# print(train.prevalence())
|
||||
# print(test.prevalence())
|
||||
quantifier.fit(train)
|
||||
estim_prev = quantifier.quantify(test.instances)
|
||||
mae = qp.error.mae(test.prevalence(), estim_prev)
|
||||
errors.append(mae)
|
||||
except Exception as e:
|
||||
print(f'wow, something happened here! skipping; {e}')
|
||||
else:
|
||||
print('skipping one!')
|
||||
|
||||
pbar.set_description(f'mae={np.mean(errors):.4f}')
|
||||
print()
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,299 @@
|
|||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import GridSearchCV, cross_val_predict
|
||||
from sklearn.base import clone
|
||||
|
||||
import quapy as qp
|
||||
from Retrieval.commons import *
|
||||
from Retrieval.methods import *
|
||||
from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as Naive
|
||||
from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC, KDEyML
|
||||
from quapy.data.base import LabelledCollection
|
||||
|
||||
from os.path import join
|
||||
from tqdm import tqdm
|
||||
|
||||
from result_table.src.table import Table
|
||||
|
||||
"""
|
||||
In this sixth experiment, we have a collection C of >6M documents.
|
||||
We split C in two equally-sized pools TrPool, TePool
|
||||
|
||||
I have randomly split the collection in 50% train and 50% split. In each split we have approx. 3.25 million documents.
|
||||
|
||||
We have 5 categories we can evaluate over: Continent, Years_Category, Num_Site_Links, Relative Pageviews and Gender.
|
||||
|
||||
From the training set I have created smaller subsets for each category:
|
||||
100K, 500K, 1M and FULL (3.25M)
|
||||
|
||||
For each category and subset, I have created a training set called: "classifier_training.json". This is the "base" training set for the classifier. In this set we have 500 documents per group in a category. (For example: Male 500, Female 500, Unknown 500). Let me know if you think we need more.
|
||||
|
||||
To "bias" the quantifier towards a query, I have executed the queries (97) on the different training sets and retrieved the 200 most relevant documents per group.
|
||||
For example: (Male 200, Female 200, Unknown 200)
|
||||
Sometimes this is infeasible, we should probably discuss this at some point.
|
||||
|
||||
You can find the results for every query in a file named:
|
||||
|
||||
"training_Query-[QID]Sample-200SPLIT.json"
|
||||
|
||||
Test:
|
||||
To evaluate our approach, I have executed the queries on the test split. You can find the results for all 97 queries up till k=1000 in this file.
|
||||
testRanking_Results.json
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def methods(classifier, class_name=None, binarize=False):
|
||||
|
||||
kde_param = {
|
||||
'continent': 0.01,
|
||||
'gender': 0.03,
|
||||
'years_category':0.03
|
||||
}
|
||||
|
||||
yield ('NaiveQuery', Naive())
|
||||
yield ('CC', ClassifyAndCount(classifier))
|
||||
yield ('PACC', PACC(classifier, val_split=5, n_jobs=-1))
|
||||
yield ('KDEy-ML', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=kde_param.get(class_name, 0.01)))
|
||||
if binarize:
|
||||
yield ('M3b', M3rND_ModelB(classifier))
|
||||
yield ('M3b+', M3rND_ModelB(classifier))
|
||||
yield ('M3d', M3rND_ModelD(classifier))
|
||||
yield ('M3d+', M3rND_ModelD(classifier))
|
||||
|
||||
|
||||
def train_classifier_fn(train_path):
|
||||
"""
|
||||
Trains a classifier. To do so, it loads the training set, transforms it into a tfidf representation.
|
||||
The classifier is Logistic Regression, with hyperparameters C (range [0.001, 0.01, ..., 1000]) and
|
||||
class_weight (range {'balanced', None}) optimized via 5FCV.
|
||||
|
||||
:return: the tfidf-vectorizer and the classifier trained
|
||||
"""
|
||||
texts, labels = load_sample(train_path, class_name=class_name)
|
||||
|
||||
if BINARIZE:
|
||||
labels = binarize_labels(labels, positive_class=protected_group[class_name])
|
||||
|
||||
tfidf = TfidfVectorizer(sublinear_tf=True, min_df=3)
|
||||
Xtr = tfidf.fit_transform(texts)
|
||||
print(f'Xtr shape={Xtr.shape}')
|
||||
|
||||
print('training classifier...', end='')
|
||||
classifier = LogisticRegression(max_iter=5000)
|
||||
modsel = GridSearchCV(
|
||||
classifier,
|
||||
param_grid={'C': np.logspace(-4, 4, 9), 'class_weight': ['balanced', None]},
|
||||
n_jobs=-1,
|
||||
cv=5
|
||||
)
|
||||
modsel.fit(Xtr, labels)
|
||||
classifier = modsel.best_estimator_
|
||||
classifier_acc = modsel.best_score_
|
||||
best_params = modsel.best_params_
|
||||
print(f'[done] best-params={best_params} got {classifier_acc:.4f} score')
|
||||
|
||||
print('generating cross-val predictions for M3')
|
||||
predictions = cross_val_predict(clone(classifier), Xtr, labels, cv=10, n_jobs=-1, verbose=10)
|
||||
conf_matrix = confusion_matrix(labels, predictions, labels=classifier.classes_)
|
||||
|
||||
training = LabelledCollection(Xtr, labels)
|
||||
print('training classes:', training.classes_)
|
||||
print('training prevalence:', training.prevalence())
|
||||
|
||||
return tfidf, classifier, conf_matrix
|
||||
|
||||
|
||||
def reduceAtK(data: LabelledCollection, k):
|
||||
# if k > len(data):
|
||||
# print(f'[warning] {k=}>{len(data)=}')
|
||||
X, y = data.Xy
|
||||
X = X[:k]
|
||||
y = y[:k]
|
||||
return LabelledCollection(X, y, classes=data.classes_)
|
||||
|
||||
|
||||
def benchmark_name(class_name, k=None):
|
||||
scape_class_name = class_name.replace('_', '\_')
|
||||
if k is None:
|
||||
return scape_class_name
|
||||
else:
|
||||
return f'{scape_class_name}@{k}'
|
||||
|
||||
|
||||
def run_experiment():
|
||||
|
||||
results = {
|
||||
'mae': {k: [] for k in Ks},
|
||||
'mrae': {k: [] for k in Ks},
|
||||
'rKL_error': [],
|
||||
'rND_error': []
|
||||
}
|
||||
|
||||
pbar = tqdm(experiment_prot(), total=experiment_prot.total())
|
||||
for train, test, q_rel_prevs in pbar:
|
||||
Xtr, ytr, score_tr = train
|
||||
Xte, yte, score_te = test
|
||||
|
||||
train_col = LabelledCollection(Xtr, ytr, classes=classifier.classes_)
|
||||
|
||||
if not method_name.startswith('Naive') and not method_name.startswith('M3'):
|
||||
method.fit(train_col, val_split=train_col, fit_classifier=False)
|
||||
elif method_name == 'Naive':
|
||||
method.fit(train_col)
|
||||
|
||||
test_col = LabelledCollection(Xte, yte, classes=classifier.classes_)
|
||||
rKL_estim, rKL_true = [], []
|
||||
rND_estim, rND_true = [], []
|
||||
for k in Ks:
|
||||
test_k = reduceAtK(test_col, k)
|
||||
if method_name == 'NaiveQuery':
|
||||
train_k = reduceAtK(train_col, k)
|
||||
method.fit(train_k)
|
||||
|
||||
estim_prev = method.quantify(test_k.instances)
|
||||
|
||||
# epsilon value for prevalence smoothing
|
||||
eps=(1. / (2. * k))
|
||||
|
||||
# error metrics
|
||||
test_k_prev = test_k.prevalence()
|
||||
mae = qp.error.mae(test_k_prev, estim_prev)
|
||||
mrae = qp.error.mrae(test_k_prev, estim_prev, eps=eps)
|
||||
rKL_at_k_estim = qp.error.kld(estim_prev, q_rel_prevs, eps=eps)
|
||||
rKL_at_k_true = qp.error.kld(test_k_prev, q_rel_prevs, eps=eps)
|
||||
|
||||
if BINARIZE:
|
||||
# [1] is the index of the minority or historically disadvantaged group
|
||||
rND_at_k_estim = np.abs(estim_prev[1] - q_rel_prevs[1])
|
||||
rND_at_k_true = np.abs(test_k_prev[1] - q_rel_prevs[1])
|
||||
|
||||
# collect results
|
||||
results['mae'][k].append(mae)
|
||||
results['mrae'][k].append(mrae)
|
||||
rKL_estim.append(rKL_at_k_estim)
|
||||
rKL_true.append(rKL_at_k_true)
|
||||
if BINARIZE:
|
||||
rND_estim.append(rND_at_k_estim)
|
||||
rND_true.append(rND_at_k_true)
|
||||
|
||||
|
||||
# aggregate fairness metrics
|
||||
def aggregate(rMs, Ks, Z=1):
|
||||
return (1 / Z) * sum((1. / np.log2(k)) * v for v, k in zip(rMs, Ks))
|
||||
|
||||
Z = sum((1. / np.log2(k)) for k in Ks)
|
||||
rKL_estim = aggregate(rKL_estim, Ks, Z)
|
||||
rKL_true = aggregate(rKL_true, Ks, Z)
|
||||
rKL_error = np.abs(rKL_true-rKL_estim)
|
||||
results['rKL_error'].append(rKL_error)
|
||||
|
||||
if BINARIZE:
|
||||
rND_estim = aggregate(rND_estim, Ks, Z)
|
||||
rND_true = aggregate(rND_true, Ks, Z)
|
||||
|
||||
if isinstance(method, AbstractM3rND):
|
||||
if method_name.endswith('+'):
|
||||
# learns the correction parameters from the query-specific training data
|
||||
conf_matrix_ = method.get_confusion_matrix(*train_col.Xy)
|
||||
else:
|
||||
# learns the correction parameters from the training data used to train the classifier
|
||||
conf_matrix_ = conf_matrix.copy()
|
||||
rND_estim = method.fair_measure_correction(rND_estim, conf_matrix_)
|
||||
|
||||
rND_error = np.abs(rND_true - rND_estim)
|
||||
results['rND_error'].append(rND_error)
|
||||
|
||||
pbar.set_description(f'{method_name}')
|
||||
|
||||
return results
|
||||
|
||||
|
||||
data_home = 'data'
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# final tables only contain the information for the data size 10K, each row is a class name and each colum
|
||||
# the corresponding rND (for binary) or rKL (for multiclass) score
|
||||
tables_RND, tables_DKL = [], []
|
||||
tables_final = []
|
||||
for class_mode in ['multiclass', 'binary']:
|
||||
BINARIZE = (class_mode=='binary')
|
||||
method_names = [name for name, *other in methods(None, binarize=BINARIZE)]
|
||||
|
||||
table_final = Table(name=f'rND' if BINARIZE else f'rKL', benchmarks=[benchmark_name(c) for c in CLASS_NAMES], methods=method_names)
|
||||
table_final.format.mean_macro = False
|
||||
tables_final.append(table_final)
|
||||
for class_name in CLASS_NAMES:
|
||||
tables_mae, tables_mrae = [], []
|
||||
|
||||
benchmarks_size =[benchmark_name(class_name, s) for s in DATA_SIZES]
|
||||
table_DKL = Table(name=f'rKL-{class_name}', benchmarks=benchmarks_size, methods=method_names)
|
||||
table_RND = Table(name=f'rND-{class_name}', benchmarks=benchmarks_size, methods=method_names)
|
||||
|
||||
for data_size in DATA_SIZES:
|
||||
print(class_name, class_mode, data_size)
|
||||
benchmarks_k = [benchmark_name(class_name, k) for k in Ks]
|
||||
# table_mae = Table(name=f'{class_name}-{data_size}-mae', benchmarks=benchmarks_k, methods=method_names)
|
||||
table_mrae = Table(name=f'{class_name}-{data_size}-mrae', benchmarks=benchmarks_k, methods=method_names)
|
||||
|
||||
# tables_mae.append(table_mae)
|
||||
tables_mrae.append(table_mrae)
|
||||
|
||||
# sets all paths
|
||||
class_home = join(data_home, class_name, data_size)
|
||||
train_data_path = join(data_home, class_name, 'FULL', 'classifier_training.json') # <----- fixed classifier
|
||||
classifier_path = join('classifiers', 'FULL', f'classifier_{class_name}_{class_mode}.pkl')
|
||||
test_rankings_path = join(data_home, 'testRanking_Results.json')
|
||||
test_query_prevs_path = join(data_home, 'prevelance_vectors_judged_docs.json')
|
||||
results_home = join('results', class_name, class_mode, data_size)
|
||||
positive_class = protected_group[class_name] if BINARIZE else None
|
||||
|
||||
# instantiates the classifier (trains it the first time, loads it in the subsequent executions)
|
||||
tfidf, classifier, conf_matrix \
|
||||
= qp.util.pickled_resource(classifier_path, train_classifier_fn, train_data_path)
|
||||
|
||||
experiment_prot = RetrievedSamples(
|
||||
class_home,
|
||||
test_rankings_path,
|
||||
test_query_prevs_path,
|
||||
vectorizer=tfidf,
|
||||
class_name=class_name,
|
||||
positive_class=positive_class,
|
||||
classes=classifier.classes_
|
||||
)
|
||||
|
||||
for method_name, method in methods(classifier, class_name, BINARIZE):
|
||||
|
||||
results_path = join(results_home, method_name + '.pkl')
|
||||
results = qp.util.pickled_resource(results_path, run_experiment)
|
||||
|
||||
# compose the tables
|
||||
for k in Ks:
|
||||
# table_mae.add(benchmark=benchmark_name(class_name, k), method=method_name, v=results['mae'][k])
|
||||
table_mrae.add(benchmark=benchmark_name(class_name, k), method=method_name, v=results['mrae'][k])
|
||||
table_DKL.add(benchmark=benchmark_name(class_name, data_size), method=method_name, v=results['rKL_error'])
|
||||
if BINARIZE:
|
||||
table_RND.add(benchmark=benchmark_name(class_name, data_size), method=method_name, v=results['rND_error'])
|
||||
|
||||
if data_size=='10K':
|
||||
value = results['rND_error'] if BINARIZE else results['rKL_error']
|
||||
table_final.add(benchmark=benchmark_name(class_name), method=method_name, v=value)
|
||||
|
||||
tables = ([table_RND] + tables_mrae) if BINARIZE else ([table_DKL] + tables_mrae)
|
||||
Table.LatexPDF(f'./latex/{class_mode}/{class_name}.pdf', tables=tables)
|
||||
|
||||
if BINARIZE:
|
||||
tables_RND.append(table_RND)
|
||||
else:
|
||||
tables_DKL.append(table_DKL)
|
||||
|
||||
Table.LatexPDF(f'./latex/global/main.pdf', tables=tables_RND+tables_DKL, dedicated_pages=False)
|
||||
Table.LatexPDF(f'./latex/final/main.pdf', tables=tables_final, dedicated_pages=False)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,88 @@
|
|||
import os.path
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.svm import LinearSVC
|
||||
|
||||
import quapy as qp
|
||||
from Retrieval.commons import RetrievedSamples, load_sample
|
||||
from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as Naive
|
||||
from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC, KDEyML
|
||||
from quapy.data.base import LabelledCollection
|
||||
from experiments import benchmark_name, reduceAtK, run_experiment
|
||||
|
||||
from os.path import join
|
||||
from tqdm import tqdm
|
||||
|
||||
from result_table.src.table import Table
|
||||
|
||||
|
||||
|
||||
def methods(classifier):
|
||||
for i, bandwidth in enumerate(np.linspace(0.01, 0.1, 10)):
|
||||
yield (f'KDE{str(i).zfill(2)}', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=bandwidth))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
data_home = 'data-modsel'
|
||||
|
||||
Ks = [5, 10, 25, 50, 75, 100, 250, 500, 750, 1000]
|
||||
|
||||
method_names = [m for m, *_ in methods(None)]
|
||||
|
||||
class_mode = 'multiclass'
|
||||
|
||||
dir_names={
|
||||
'gender': '100K_GENDER_TREC21_QUERIES/100K-NEW-QUERIES',
|
||||
'continent': '100K_CONT_TREC21_QUERIES/100K-NEW-QUERIES',
|
||||
'years_category': '100K_YEARS_TREC21_QUERIES/100K-NEW-QUERIES'
|
||||
}
|
||||
|
||||
for class_name in ['gender', 'continent', 'years_category']:
|
||||
|
||||
tables_mrae = []
|
||||
|
||||
benchmarks = [benchmark_name(class_name, k) for k in Ks]
|
||||
|
||||
for data_size in ['100K']:
|
||||
|
||||
table_mrae = Table(name=f'{class_name}-{data_size}-mrae', benchmarks=benchmarks, methods=method_names)
|
||||
tables_mrae.append(table_mrae)
|
||||
|
||||
class_home = join(data_home, dir_names[class_name])
|
||||
classifier_path = join('classifiers', 'FULL', f'classifier_{class_name}_{class_mode}.pkl')
|
||||
test_rankings_path = join(data_home, 'testRanking-TREC21-Queries_Results.json')
|
||||
test_query_prevs_path = join('data', 'prevelance_vectors_judged_docs.json')
|
||||
results_home = join('results', 'modsel', class_name, data_size)
|
||||
|
||||
tfidf, classifier, conf_matrix = pickle.load(open(classifier_path, 'rb'))
|
||||
|
||||
experiment_prot = RetrievedSamples(
|
||||
class_home,
|
||||
test_rankings_path,
|
||||
test_query_prevs_path,
|
||||
vectorizer=tfidf,
|
||||
class_name=class_name,
|
||||
classes=classifier.classes_
|
||||
)
|
||||
for method_name, quantifier in methods(classifier):
|
||||
|
||||
results_path = join(results_home, method_name + '.pkl')
|
||||
results = qp.util.pickled_resource(results_path, run_experiment)
|
||||
|
||||
for k in Ks:
|
||||
table_mrae.add(benchmark=benchmark_name(class_name, k), method=method_name, v=results['mrae'][k])
|
||||
|
||||
Table.LatexPDF(f'./latex/modsel/{class_name}.pdf', tables=tables_mrae)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,88 @@
|
|||
|
||||
"""
|
||||
This file implements some of the methods presented in the FAccT'22 paper by
|
||||
Ghazimatin, Kleindessner, Russell, Abedjan, and Golebiowski,
|
||||
Measuring Fairness of Rankings under Noisy Sensitive Information.
|
||||
|
||||
In particular, it implements two variants of a method relying on M3=rND:
|
||||
one in which the assumed graphical model is P(Â,A,S) = P(Â|A)*P(S|A) (called "b")
|
||||
and another in which the assumed graphical model is P(Â,A,S) = P(Â|A)*P(S|Â) (called "d")
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from abc import ABC, abstractmethod
|
||||
from sklearn.metrics import confusion_matrix
|
||||
|
||||
from quapy.method.aggregative import CC
|
||||
|
||||
|
||||
class AbstractM3rND(ABC):
|
||||
def __init__(self, classifier):
|
||||
self.quantifier = CC(classifier)
|
||||
|
||||
def proxy_labels(self, instances):
|
||||
return self.quantifier.classify(instances)
|
||||
|
||||
def quantify(self, instances):
|
||||
return self.quantifier.quantify(instances)
|
||||
|
||||
@abstractmethod
|
||||
def fair_measure_correction(self, rND_estim: float, conf_matrix: np.ndarray):
|
||||
...
|
||||
|
||||
def get_confusion_matrix(self, X, y, additive_smoothing=0.5):
|
||||
"""
|
||||
Some confusion matrices may contain 0 values for certain classes, and this causes
|
||||
instabilities in the correction. If requested, applies additive smoothing. Default
|
||||
is adding half a count.
|
||||
|
||||
:param X: array-like with the covariates
|
||||
:param y: array-like with the true labels
|
||||
:param additive_smoothing: float, default 0.5
|
||||
:return: the confusion matrix C with entries Cij=P(Y=i,Ŷ=j)
|
||||
"""
|
||||
proxy_labels = self.proxy_labels(X)
|
||||
true_labels = y
|
||||
labels = self.quantifier.classes_
|
||||
conf_matrix = confusion_matrix(true_labels, proxy_labels, labels=labels)
|
||||
if additive_smoothing > 0:
|
||||
conf_matrix = conf_matrix.astype(float) + additive_smoothing
|
||||
return conf_matrix
|
||||
|
||||
|
||||
class M3rND_ModelB(AbstractM3rND):
|
||||
def __init__(self, classifier):
|
||||
super().__init__(classifier)
|
||||
|
||||
def fair_measure_correction(self, rND_estim: float, conf_matrix: np.ndarray):
|
||||
# conf_matrix contains values Cij=P(Y=i,Ŷ=j)
|
||||
# truecond_matrix contains values Cij=P(Ŷ=j|Y=i) (truecond stands for "conditioned on true labels")
|
||||
truecond_matrix = conf_matrix / conf_matrix.sum(axis=1, keepdims=True)
|
||||
p = truecond_matrix[0, 1] # P(hat{A}=1|A=0)
|
||||
q = truecond_matrix[1, 0] # P(hat{A}=0|A=1)
|
||||
den = (1 - p - q)
|
||||
if den != 0:
|
||||
corr = 1./den
|
||||
rND_estim = rND_estim * corr
|
||||
return rND_estim
|
||||
|
||||
|
||||
class M3rND_ModelD(AbstractM3rND):
|
||||
def __init__(self, classifier):
|
||||
super().__init__(classifier)
|
||||
|
||||
def fair_measure_correction(self, rND_estim: float, conf_matrix: np.ndarray):
|
||||
# conf_matrix contains values Cij=P(Y=i,Ŷ=j)
|
||||
# truecond_matrix contains values Cij=P(Ŷ=j|Y=i) (truecond stands for "conditioned on true labels")
|
||||
truecond_matrix = conf_matrix / conf_matrix.sum(axis=1, keepdims=True)
|
||||
prev_A = conf_matrix.sum(axis=1)
|
||||
beta = prev_A[1] # P(A)
|
||||
p = truecond_matrix[0, 1] # P(hat{A}=1|A=0)
|
||||
q = truecond_matrix[1, 0] # P(hat{A}=0|A=1)
|
||||
x = (1 - q) * beta + p * (1 - beta)
|
||||
y = q * beta + (1 - p) * (1 - beta)
|
||||
if x != 0 and y != 0:
|
||||
corr = ((((1 - q) * beta) / x) - (q * beta / y))
|
||||
rND_estim = rND_estim * corr
|
||||
return rND_estim
|
||||
|
|
@ -0,0 +1,124 @@
|
|||
import itertools
|
||||
import os.path
|
||||
import pickle
|
||||
import numpy as np
|
||||
from Retrieval.experiments import methods
|
||||
from Retrieval.commons import CLASS_NAMES, Ks, DATA_SIZES
|
||||
from os.path import join
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
|
||||
data_home = 'data'
|
||||
class_mode = 'multiclass'
|
||||
|
||||
method_names = [name for name, *other in methods(None, 'continent')]
|
||||
|
||||
all_results = {}
|
||||
|
||||
class_name_label = {
|
||||
'continent': 'Geographic Location',
|
||||
'gender': 'Gender',
|
||||
'years_category': 'Age of Topic'
|
||||
}
|
||||
|
||||
|
||||
# loads all MRAE results, and returns a dictionary containing the values, which is indexed by:
|
||||
# class_name -> data_size -> method_name -> k -> stat -> float
|
||||
# where stat is "mean", "std", "max"
|
||||
def load_all_results():
|
||||
|
||||
for class_name in CLASS_NAMES:
|
||||
|
||||
all_results[class_name] = {}
|
||||
|
||||
for data_size in DATA_SIZES:
|
||||
|
||||
all_results[class_name][data_size] = {}
|
||||
|
||||
results_home = join('results', class_name, class_mode, data_size)
|
||||
|
||||
all_results[class_name][data_size] = {}
|
||||
|
||||
for method_name in method_names:
|
||||
results_path = join(results_home, method_name + '.pkl')
|
||||
try:
|
||||
results = pickle.load(open(results_path, 'rb'))
|
||||
except Exception as e:
|
||||
print(f'missing result {results}', e)
|
||||
|
||||
all_results[class_name][data_size][method_name] = {}
|
||||
for k in Ks:
|
||||
all_results[class_name][data_size][method_name][k] = {}
|
||||
values = results['mrae']
|
||||
all_results[class_name][data_size][method_name][k]['mean'] = np.mean(values[k])
|
||||
all_results[class_name][data_size][method_name][k]['std'] = np.std(values[k])
|
||||
all_results[class_name][data_size][method_name][k]['max'] = np.max(values[k])
|
||||
|
||||
return all_results
|
||||
|
||||
|
||||
results = load_all_results()
|
||||
|
||||
# generates the class-independent, size-independent plots for y-axis=MRAE in which:
|
||||
# - the x-axis displays the Ks
|
||||
|
||||
for class_name in CLASS_NAMES:
|
||||
for data_size in DATA_SIZES[:1]:
|
||||
|
||||
log = class_name=='gender'
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
max_means = []
|
||||
markers = itertools.cycle(['o', 's', '^', 'D', 'v', '*', '+'])
|
||||
for method_name in method_names:
|
||||
# class_name -> data_size -> method_name -> k -> stat -> float
|
||||
means = [
|
||||
results[class_name][data_size][method_name][k]['mean'] for k in Ks
|
||||
]
|
||||
stds = [
|
||||
results[class_name][data_size][method_name][k]['std'] for k in Ks
|
||||
]
|
||||
# max_mean = np.max([
|
||||
# results[class_name][data_size][method_name][k]['max'] for k in Ks
|
||||
# ])
|
||||
max_means.append(max(means))
|
||||
|
||||
means = np.asarray(means)
|
||||
stds = np.asarray(stds)
|
||||
|
||||
method_name = method_name.replace('NaiveQuery', 'Naive@$k$')
|
||||
method_name = method_name.replace('KDEy-ML', 'KDEy')
|
||||
marker = next(markers)
|
||||
line = ax.plot(Ks, means, 'o-', label=method_name, color=None, linewidth=3, markersize=10, marker=marker)
|
||||
color = line[-1].get_color()
|
||||
if log:
|
||||
ax.set_yscale('log')
|
||||
# ax.fill_between(Ks, means - stds, means + stds, alpha=0.3, color=color)
|
||||
|
||||
ax.grid(True, which='both', axis='y', color='gray', linestyle='--', linewidth=0.3)
|
||||
ax.set_xlabel('k')
|
||||
ax.set_ylabel('RAE' + (' (log scale)' if log else ''))
|
||||
data_size_label = '$\mathcal{L}_{10\mathrm{K}}$'
|
||||
ax.set_title(f'{class_name_label[class_name]} from {data_size_label}')
|
||||
ax.set_ylim([0, max(max_means)*1.05])
|
||||
|
||||
if class_name == 'years_category':
|
||||
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
||||
|
||||
os.makedirs(f'plots/var_k/{class_name}', exist_ok=True)
|
||||
plotpath = f'plots/var_k/{class_name}/{data_size}_mrae.pdf'
|
||||
print(f'saving plot in {plotpath}')
|
||||
plt.savefig(plotpath, bbox_inches='tight')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,88 @@
|
|||
import itertools
|
||||
import os.path
|
||||
from Retrieval.experiments import methods
|
||||
from Retrieval.commons import CLASS_NAMES, Ks, DATA_SIZES
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from Retrieval.plot_mrae_xaxis_k import load_all_results
|
||||
|
||||
data_home = 'data'
|
||||
class_mode = 'multiclass'
|
||||
|
||||
method_names = [name for name, *other in methods(None)]
|
||||
|
||||
all_results = {}
|
||||
|
||||
class_name_label = {
|
||||
'continent': 'Geographic Location',
|
||||
'gender': 'Gender',
|
||||
'years_category': 'Age of Topic'
|
||||
}
|
||||
|
||||
# loads all MRAE results, and returns a dictionary containing the values, which is indexed by:
|
||||
# class_name -> data_size -> method_name -> k -> stat -> float
|
||||
results = load_all_results()
|
||||
|
||||
# generates the class-independent, size-independent plots for y-axis=MRAE in which:
|
||||
# - the x-axis displays the Ks
|
||||
|
||||
# X_DATA_SIZES = [int(x.replace('K', '000').replace('M', '000000').replace('FULL', '3250000')) for x in DATA_SIZES]
|
||||
X_DATA_SIZES = [x.replace('FULL', '3.25M') for x in DATA_SIZES]
|
||||
|
||||
for class_name in CLASS_NAMES:
|
||||
for k in [100]: #Ks:
|
||||
|
||||
log = class_name=='gender'
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
max_means = []
|
||||
markers = itertools.cycle(['o', 's', '^', 'D', 'v', '*', '+'])
|
||||
for method_name in method_names:
|
||||
# class_name -> data_size -> method_name -> k -> stat -> float
|
||||
means = [
|
||||
results[class_name][data_size][method_name][k]['mean'] for data_size in DATA_SIZES
|
||||
]
|
||||
stds = [
|
||||
results[class_name][data_size][method_name][k]['std'] for data_size in DATA_SIZES
|
||||
]
|
||||
# max_mean = np.max([
|
||||
# results[class_name][data_size][method_name][k]['max'] for data_size in DATA_SIZE
|
||||
# ])
|
||||
|
||||
max_means.append(max(means))
|
||||
|
||||
style = 'o-' if method_name != 'CC' else '--'
|
||||
method_name = method_name.replace('NaiveQuery', 'Naive@$k$')
|
||||
method_name = method_name.replace('KDEy-ML', 'KDEy')
|
||||
marker=next(markers)
|
||||
line = ax.plot(X_DATA_SIZES, means, style, label=method_name, color=None, linewidth=3, markersize=10, marker=marker)
|
||||
color = line[-1].get_color()
|
||||
if log:
|
||||
ax.set_yscale('log')
|
||||
# ax.fill_between(Ks, means - stds, means + stds, alpha=0.3, color=color)
|
||||
|
||||
ax.grid(True, which='both', axis='y', color='gray', linestyle='--', linewidth=0.3)
|
||||
ax.set_xlabel('training pool size')
|
||||
ax.set_ylabel('RAE' + (' (log scale)' if log else ''))
|
||||
ax.set_title(f'{class_name_label[class_name]} at exposure {k=}')
|
||||
ax.set_ylim([0, max(max_means)*1.05])
|
||||
|
||||
if class_name == 'years_category':
|
||||
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
||||
|
||||
os.makedirs(f'plots/var_size/{class_name}', exist_ok=True)
|
||||
plotpath = f'plots/var_size/{class_name}/{k}_mrae.pdf'
|
||||
print(f'saving plot in {plotpath}')
|
||||
plt.savefig(plotpath, bbox_inches='tight')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,93 @@
|
|||
import os.path
|
||||
import pickle
|
||||
from itertools import zip_longest
|
||||
from commons import RetrievedSamples, load_sample, DATA_SIZES
|
||||
from os.path import join
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
"""
|
||||
Plots the distribution of (predicted) relevance score for the test samples and for the training samples wrt:
|
||||
- training pool size (10K, 50K, 100K, 500K, 1M, FULL)
|
||||
- rank
|
||||
"""
|
||||
|
||||
|
||||
data_home = 'data'
|
||||
|
||||
up_to = 250
|
||||
|
||||
for class_name in ['continent']: # 'num_sitelinks_category', 'relative_pageviews_category', 'years_category', 'continent', 'gender']:
|
||||
test_added = False
|
||||
Mtrs, Mtes, source = [], [], []
|
||||
for data_size in DATA_SIZES:
|
||||
|
||||
class_home = join(data_home, class_name, data_size)
|
||||
classifier_path = join('classifiers', 'FULL', f'classifier_{class_name}.pkl')
|
||||
test_rankings_path = join(data_home, 'testRanking_Results.json')
|
||||
test_query_prevs_path = join(data_home, 'prevelance_vectors_judged_docs.json')
|
||||
|
||||
_, classifier = pickle.load(open(classifier_path, 'rb'))
|
||||
|
||||
experiment_prot = RetrievedSamples(
|
||||
class_home,
|
||||
test_rankings_path,
|
||||
test_query_prevs_path,
|
||||
vectorizer=None,
|
||||
class_name=class_name,
|
||||
classes=classifier.classes_
|
||||
)
|
||||
|
||||
Mtr = []
|
||||
Mte = []
|
||||
pbar = tqdm(experiment_prot(), total=experiment_prot.total())
|
||||
for train, test, *_ in pbar:
|
||||
Xtr, ytr, score_tr = train
|
||||
Xte, yte, score_te = test
|
||||
if len(score_tr) >= up_to:
|
||||
Mtr.append(score_tr)
|
||||
Mte.append(score_te)
|
||||
|
||||
Mtrs.append(Mtr)
|
||||
if not test_added:
|
||||
Mtes.append(Mte)
|
||||
test_added = True
|
||||
source.append(data_size)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
# train_source = ['train-'+s for s in source]
|
||||
train_source = ['$L_{'+s.replace('FULL', '3.25M').replace('K','\mathrm{K}').replace('M','\mathrm{M}')+'}$' for s in source]
|
||||
# Ms = list(zip(Mtrs, train_source))+list(zip(Mtes, ['test']))
|
||||
Ms = list(zip(Mtrs, train_source)) + list(zip(Mtes, ['$U_{(3.25\mathrm{M})}$']))
|
||||
|
||||
|
||||
for M, source in Ms:
|
||||
M = np.asarray(list(zip_longest(*M, fillvalue=np.nan))).T
|
||||
|
||||
num_rep, num_docs = M.shape
|
||||
|
||||
mean_values = np.nanmean(M, axis=0)
|
||||
n_filled = np.count_nonzero(~np.isnan(M), axis=0)
|
||||
std_errors = np.nanstd(M, axis=0) / np.sqrt(n_filled)
|
||||
|
||||
line = ax.plot(range(num_docs), mean_values, '-', label=source, color=None)
|
||||
color = line[-1].get_color()
|
||||
ax.fill_between(range(num_docs), mean_values - std_errors, mean_values + std_errors, alpha=0.3, color=color)
|
||||
|
||||
|
||||
ax.set_xlabel('rank ($k$)')
|
||||
ax.set_ylabel('predicted relevance score')
|
||||
ax.set_title(class_name.replace('continent', 'Geographic Location'))
|
||||
ax.set_xlim((0,up_to))
|
||||
|
||||
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
||||
|
||||
# plt.show()
|
||||
os.makedirs('plots', exist_ok=True)
|
||||
plotpath = f'plots/{class_name}_rel_distrbution_2.pdf'
|
||||
print(f'saving plot in {plotpath}')
|
||||
plt.savefig(plotpath, bbox_inches='tight')
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,16 @@
|
|||
import pandas as pd
|
||||
|
||||
from os.path import join
|
||||
|
||||
from quapy.data import LabelledCollection
|
||||
|
||||
data_home = 'data'
|
||||
CLASS_NAME = 'continent'
|
||||
datasize = '100K'
|
||||
|
||||
file_path = join(data_home, 'prevelance_vectors_judged_docs.json')
|
||||
|
||||
df = pd.read_json(file_path)
|
||||
|
||||
pd.set_option('display.max_columns', None)
|
||||
print(df)
|
|
@ -11,7 +11,7 @@ from . import util
|
|||
from . import model_selection
|
||||
from . import classification
|
||||
|
||||
__version__ = '0.1.8'
|
||||
__version__ = '0.1.9'
|
||||
|
||||
environ = {
|
||||
'SAMPLE_SIZE': None,
|
||||
|
|
|
@ -158,8 +158,8 @@ def kld(prevs, prevs_hat, eps=None):
|
|||
:return: Kullback-Leibler divergence between the two distributions
|
||||
"""
|
||||
eps = __check_eps(eps)
|
||||
smooth_prevs = prevs + eps
|
||||
smooth_prevs_hat = prevs_hat + eps
|
||||
smooth_prevs = smooth(prevs, eps)
|
||||
smooth_prevs_hat = smooth(prevs_hat, eps)
|
||||
return (smooth_prevs*np.log(smooth_prevs/smooth_prevs_hat)).sum(axis=-1)
|
||||
|
||||
|
||||
|
|
|
@ -87,7 +87,6 @@ def evaluation_report(model: BaseQuantifier,
|
|||
Generates a report (a pandas' DataFrame) containing information of the evaluation of the model as according
|
||||
to a specific protocol and in terms of one or more evaluation metrics (errors).
|
||||
|
||||
|
||||
:param model: a quantifier, instance of :class:`quapy.method.base.BaseQuantifier`
|
||||
:param protocol: :class:`quapy.protocol.AbstractProtocol`; if this object is also instance of
|
||||
:class:`quapy.protocol.OnLabelledCollectionProtocol`, then the aggregation speed-up can be run. This is the protocol
|
||||
|
|
|
@ -141,6 +141,19 @@ def uniform_prevalence_sampling(n_classes, size=1):
|
|||
return u
|
||||
|
||||
|
||||
def uniform_prevalence(n_classes):
|
||||
"""
|
||||
Returns a vector representing the uniform distribution for `n_classes`
|
||||
|
||||
:param n_classes: number of classes
|
||||
:return: np.ndarray with all values 1/n_classes
|
||||
"""
|
||||
assert isinstance(n_classes, int) and n_classes>0, \
|
||||
(f'param {n_classes} not understood; must be a positive integer representing the '
|
||||
f'number of classes ')
|
||||
return np.full(shape=n_classes, fill_value=1./n_classes)
|
||||
|
||||
|
||||
uniform_simplex_sampling = uniform_prevalence_sampling
|
||||
|
||||
|
||||
|
|
|
@ -52,7 +52,7 @@ class KDEBase:
|
|||
"""
|
||||
return np.exp(kde.score_samples(X))
|
||||
|
||||
def get_mixture_components(self, X, y, n_classes, bandwidth):
|
||||
def get_mixture_components(self, X, y, classes, bandwidth):
|
||||
"""
|
||||
Returns an array containing the mixture components, i.e., the KDE functions for each class.
|
||||
|
||||
|
@ -62,7 +62,13 @@ class KDEBase:
|
|||
:param bandwidth: float, the bandwidth of the kernel
|
||||
:return: a list of KernelDensity objects, each fitted with the corresponding class-specific covariates
|
||||
"""
|
||||
return [self.get_kde_function(X[y == cat], bandwidth) for cat in range(n_classes)]
|
||||
class_cond_X = []
|
||||
for cat in classes:
|
||||
selX = X[y==cat]
|
||||
if selX.size==0:
|
||||
selX = [F.uniform_prevalence(len(classes))]
|
||||
class_cond_X.append(np.asarray(selX))
|
||||
return [self.get_kde_function(X_cond_yi, bandwidth) for X_cond_yi in class_cond_X]
|
||||
|
||||
|
||||
|
||||
|
@ -114,7 +120,7 @@ class KDEyML(AggregativeSoftQuantifier, KDEBase):
|
|||
self.random_state=random_state
|
||||
|
||||
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
|
||||
self.mix_densities = self.get_mixture_components(*classif_predictions.Xy, data.n_classes, self.bandwidth)
|
||||
self.mix_densities = self.get_mixture_components(*classif_predictions.Xy, data.classes_, self.bandwidth)
|
||||
return self
|
||||
|
||||
def aggregate(self, posteriors: np.ndarray):
|
||||
|
@ -196,7 +202,7 @@ class KDEyHD(AggregativeSoftQuantifier, KDEBase):
|
|||
self.montecarlo_trials = montecarlo_trials
|
||||
|
||||
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
|
||||
self.mix_densities = self.get_mixture_components(*classif_predictions.Xy, data.n_classes, self.bandwidth)
|
||||
self.mix_densities = self.get_mixture_components(*classif_predictions.Xy, data.classes_, self.bandwidth)
|
||||
|
||||
N = self.montecarlo_trials
|
||||
rs = self.random_state
|
||||
|
|
|
@ -2,7 +2,7 @@ from abc import ABC, abstractmethod
|
|||
from copy import deepcopy
|
||||
from typing import Callable, Union
|
||||
import numpy as np
|
||||
from abstention.calibration import NoBiasVectorScaling, TempScaling, VectorScaling
|
||||
from abstention.calibration import NoBiasVectorScaling, TempScaling, VectorScaling, PlattScaling
|
||||
from scipy import optimize
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.calibration import CalibratedClassifierCV
|
||||
|
@ -636,18 +636,35 @@ class EMQ(AggregativeSoftQuantifier):
|
|||
calibrator = TempScaling()
|
||||
elif self.recalib == 'vs':
|
||||
calibrator = VectorScaling()
|
||||
elif self.recalib == 'platt':
|
||||
calibrator = CalibratedClassifierCV(estimator=self.classifier, cv='prefit')
|
||||
else:
|
||||
raise ValueError('invalid param argument for recalibration method; available ones are '
|
||||
'"nbvs", "bcts", "ts", and "vs".')
|
||||
|
||||
self.calibration_function = calibrator(P, np.eye(data.n_classes)[y], posterior_supplied=True)
|
||||
if not np.issubdtype(y.dtype, np.number):
|
||||
y = np.searchsorted(data.classes_, y)
|
||||
|
||||
if self.recalib == 'platt':
|
||||
self.classifier = calibrator.fit(*data.Xy)
|
||||
else:
|
||||
print(classif_predictions.prevalence())
|
||||
try:
|
||||
self.calibration_function = calibrator(P, np.eye(data.n_classes)[y], posterior_supplied=True)
|
||||
except RuntimeError as e:
|
||||
print(e)
|
||||
print('defaults to I')
|
||||
self.calibration_function = lambda P:P
|
||||
|
||||
if self.exact_train_prev:
|
||||
self.train_prevalence = data.prevalence()
|
||||
else:
|
||||
train_posteriors = classif_predictions.X
|
||||
if self.recalib is not None:
|
||||
train_posteriors = self.calibration_function(train_posteriors)
|
||||
if self.recalib == 'platt':
|
||||
train_posteriors = self.classifier.predict_proba(train_posteriors)
|
||||
else:
|
||||
train_posteriors = self.calibration_function(train_posteriors)
|
||||
self.train_prevalence = F.prevalence_from_probabilities(train_posteriors)
|
||||
|
||||
def aggregate(self, classif_posteriors, epsilon=EPSILON):
|
||||
|
@ -681,6 +698,11 @@ class EMQ(AggregativeSoftQuantifier):
|
|||
"""
|
||||
Px = posterior_probabilities
|
||||
Ptr = np.copy(tr_prev)
|
||||
|
||||
if np.product(Ptr) == 0: # some entry is 0; we should smooth the values to avoid 0 division
|
||||
Ptr += epsilon
|
||||
Ptr /= Ptr.sum()
|
||||
|
||||
qs = np.copy(Ptr) # qs (the running estimate) is initialized as the training prevalence
|
||||
|
||||
s, converged = 0, False
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
from typing import Union, Callable
|
||||
import numpy as np
|
||||
from sklearn.feature_extraction.text import CountVectorizer
|
||||
|
||||
from quapy.functional import get_divergence
|
||||
from quapy.data import LabelledCollection
|
||||
|
@ -146,6 +147,53 @@ class DMx(BaseQuantifier):
|
|||
return F.argmin_prevalence(loss, n_classes, method=self.search)
|
||||
|
||||
|
||||
class ReadMe(BaseQuantifier):
|
||||
|
||||
def __init__(self, bootstrap_trials=100, bootstrap_range=100, bagging_trials=100, bagging_range=25, **vectorizer_kwargs):
|
||||
self.bootstrap_trials = bootstrap_trials
|
||||
self.bootstrap_range = bootstrap_range
|
||||
self.bagging_trials = bagging_trials
|
||||
self.bagging_range = bagging_range
|
||||
self.vectorizer_kwargs = vectorizer_kwargs
|
||||
|
||||
def fit(self, data: LabelledCollection):
|
||||
X, y = data.Xy
|
||||
self.vectorizer = CountVectorizer(binary=True, **self.vectorizer_kwargs)
|
||||
X = self.vectorizer.fit_transform(X)
|
||||
self.class_conditional_X = {i: X[y==i] for i in range(data.classes_)}
|
||||
|
||||
def quantify(self, instances):
|
||||
X = self.vectorizer.transform(instances)
|
||||
|
||||
# number of features
|
||||
num_docs, num_feats = X.shape
|
||||
|
||||
# bootstrap
|
||||
p_boots = []
|
||||
for _ in range(self.bootstrap_trials):
|
||||
docs_idx = np.random.choice(num_docs, size=self.bootstra_range, replace=False)
|
||||
class_conditional_X = {i: X[docs_idx] for i, X in self.class_conditional_X.items()}
|
||||
Xboot = X[docs_idx]
|
||||
|
||||
# bagging
|
||||
p_bags = []
|
||||
for _ in range(self.bagging_trials):
|
||||
feat_idx = np.random.choice(num_feats, size=self.bagging_range, replace=False)
|
||||
class_conditional_Xbag = {i: X[:, feat_idx] for i, X in class_conditional_X.items()}
|
||||
Xbag = Xboot[:,feat_idx]
|
||||
p = self.std_constrained_linear_ls(Xbag, class_conditional_Xbag)
|
||||
p_bags.append(p)
|
||||
p_boots.append(np.mean(p_bags, axis=0))
|
||||
|
||||
p_mean = np.mean(p_boots, axis=0)
|
||||
p_std = np.std(p_bags, axis=0)
|
||||
|
||||
return p_mean
|
||||
|
||||
|
||||
def std_constrained_linear_ls(self, X, class_cond_X: dict):
|
||||
pass
|
||||
|
||||
|
||||
def _get_features_range(X):
|
||||
feat_ranges = []
|
||||
|
|
|
@ -56,6 +56,7 @@ def parallel(func, args, n_jobs, seed=None, asarray=True, backend='loky'):
|
|||
:param seed: the numeric seed
|
||||
:param asarray: set to True to return a np.ndarray instead of a list
|
||||
:param backend: indicates the backend used for handling parallel works
|
||||
:param open_args: if True, then the delayed function is called on *args_i, instead of on args_i
|
||||
"""
|
||||
def func_dec(environ, seed, *args):
|
||||
qp.environ = environ.copy()
|
||||
|
@ -74,6 +75,40 @@ def parallel(func, args, n_jobs, seed=None, asarray=True, backend='loky'):
|
|||
return out
|
||||
|
||||
|
||||
def parallel_unpack(func, args, n_jobs, seed=None, asarray=True, backend='loky'):
|
||||
"""
|
||||
A wrapper of multiprocessing:
|
||||
|
||||
>>> Parallel(n_jobs=n_jobs)(
|
||||
>>> delayed(func)(*args_i) for args_i in args
|
||||
>>> )
|
||||
|
||||
that takes the `quapy.environ` variable as input silently.
|
||||
Seeds the child processes to ensure reproducibility when n_jobs>1.
|
||||
|
||||
:param func: callable
|
||||
:param args: args of func
|
||||
:param seed: the numeric seed
|
||||
:param asarray: set to True to return a np.ndarray instead of a list
|
||||
:param backend: indicates the backend used for handling parallel works
|
||||
"""
|
||||
|
||||
def func_dec(environ, seed, *args):
|
||||
qp.environ = environ.copy()
|
||||
qp.environ['N_JOBS'] = 1
|
||||
# set a context with a temporal seed to ensure results are reproducibles in parallel
|
||||
with ExitStack() as stack:
|
||||
if seed is not None:
|
||||
stack.enter_context(qp.util.temp_seed(seed))
|
||||
return func(*args)
|
||||
|
||||
out = Parallel(n_jobs=n_jobs, backend=backend)(
|
||||
delayed(func_dec)(qp.environ, None if seed is None else seed + i, *args_i) for i, args_i in enumerate(args)
|
||||
)
|
||||
if asarray:
|
||||
out = np.asarray(out)
|
||||
return out
|
||||
|
||||
@contextlib.contextmanager
|
||||
def temp_seed(random_state):
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue