Compare commits
13 Commits
| Author | SHA1 | Date |
|---|---|---|
|
|
c63c35269a | |
|
|
2800694672 | |
|
|
e8b6396366 | |
|
|
e3e6f061d8 | |
|
|
60171c1b5e | |
|
|
2554c58fac | |
|
|
9437ccc837 | |
|
|
de98926d00 | |
|
|
bef086ab50 | |
|
|
732ffbefb1 | |
|
|
9ce0001047 | |
|
|
b3b7c69263 | |
|
|
770e8e62be |
|
|
@ -183,3 +183,4 @@ logger/*
|
|||
explore_data.ipynb
|
||||
run.sh
|
||||
wandb
|
||||
local_datasets
|
||||
|
|
@ -1,5 +1,6 @@
|
|||
import sys
|
||||
import os
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
|
|
@ -8,13 +9,87 @@ import re
|
|||
from dataManager.multilingualDataset import MultilingualDataset
|
||||
|
||||
CLS_PROCESSED_DATA_DIR = os.path.expanduser("~/datasets/cls-acl10-processed/")
|
||||
LANGS = ["de", "en", "fr", "jp"]
|
||||
CLS_UNPROCESSED_DATA_DIR = os.path.expanduser("~/datasets/cls-acl10-unprocessed/")
|
||||
# LANGS = ["de", "en", "fr", "jp"]
|
||||
LANGS = ["de", "en", "fr"]
|
||||
DOMAINS = ["books", "dvd", "music"]
|
||||
|
||||
regex = r":\d+"
|
||||
subst = ""
|
||||
|
||||
|
||||
def load_unprocessed_cls(reduce_target_space=False):
|
||||
data = {}
|
||||
data_tr = []
|
||||
data_te = []
|
||||
c_tr = 0
|
||||
c_te = 0
|
||||
for lang in LANGS:
|
||||
data[lang] = {}
|
||||
for domain in DOMAINS:
|
||||
data[lang][domain] = {}
|
||||
print(f"lang: {lang}, domain: {domain}")
|
||||
for split in ["train", "test"]:
|
||||
domain_data = []
|
||||
fdir = os.path.join(
|
||||
CLS_UNPROCESSED_DATA_DIR, lang, domain, f"{split}.review"
|
||||
)
|
||||
tree = ET.parse(fdir)
|
||||
root = tree.getroot()
|
||||
for child in root:
|
||||
if reduce_target_space:
|
||||
rating = np.zeros(3, dtype=int)
|
||||
original_rating = int(float(child.find("rating").text))
|
||||
if original_rating < 3:
|
||||
new_rating = 1
|
||||
elif original_rating > 3:
|
||||
new_rating = 3
|
||||
else:
|
||||
new_rating = 2
|
||||
rating[new_rating - 1] = 1
|
||||
# rating = new_rating
|
||||
else:
|
||||
rating = np.zeros(5, dtype=int)
|
||||
rating[int(float(child.find("rating").text)) - 1] = 1
|
||||
# rating = new_rating
|
||||
# if split == "train":
|
||||
# target_data = data_tr
|
||||
# current_count = len(target_data)
|
||||
# c_tr = +1
|
||||
# else:
|
||||
# target_data = data_te
|
||||
# current_count = len(target_data)
|
||||
# c_te = +1
|
||||
domain_data.append(
|
||||
# target_data.append(
|
||||
{
|
||||
"asin": child.find("asin").text
|
||||
if child.find("asin") is not None
|
||||
else None,
|
||||
# "category": child.find("category").text
|
||||
# if child.find("category") is not None
|
||||
# else None,
|
||||
"category": domain,
|
||||
# "rating": child.find("rating").text
|
||||
# if child.find("rating") is not None
|
||||
# else None,
|
||||
"rating": rating,
|
||||
"title": child.find("title").text
|
||||
if child.find("title") is not None
|
||||
else None,
|
||||
"text": child.find("text").text
|
||||
if child.find("text") is not None
|
||||
else None,
|
||||
"summary": child.find("summary").text
|
||||
if child.find("summary") is not None
|
||||
else None,
|
||||
"lang": lang,
|
||||
}
|
||||
)
|
||||
data[lang][domain].update({split: domain_data})
|
||||
return data
|
||||
|
||||
|
||||
def load_cls():
|
||||
data = {}
|
||||
for lang in LANGS:
|
||||
|
|
@ -24,7 +99,7 @@ def load_cls():
|
|||
train = (
|
||||
open(
|
||||
os.path.join(
|
||||
CLS_PROCESSED_DATA_DIR, lang, domain, "train.processed"
|
||||
CLS_UNPROCESSED_DATA_DIR, lang, domain, "train.processed"
|
||||
),
|
||||
"r",
|
||||
)
|
||||
|
|
@ -34,7 +109,7 @@ def load_cls():
|
|||
test = (
|
||||
open(
|
||||
os.path.join(
|
||||
CLS_PROCESSED_DATA_DIR, lang, domain, "test.processed"
|
||||
CLS_UNPROCESSED_DATA_DIR, lang, domain, "test.processed"
|
||||
),
|
||||
"r",
|
||||
)
|
||||
|
|
@ -59,18 +134,33 @@ def process_data(line):
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"datapath: {CLS_PROCESSED_DATA_DIR}")
|
||||
data = load_cls()
|
||||
multilingualDataset = MultilingualDataset(dataset_name="cls")
|
||||
for lang in LANGS:
|
||||
# TODO: just using book domain atm
|
||||
Xtr = [text[0] for text in data[lang]["books"]["train"]]
|
||||
# Ytr = np.expand_dims([text[1] for text in data[lang]["books"]["train"]], axis=1)
|
||||
Ytr = np.vstack([text[1] for text in data[lang]["books"]["train"]])
|
||||
print(f"datapath: {CLS_UNPROCESSED_DATA_DIR}")
|
||||
# data = load_cls()
|
||||
data = load_unprocessed_cls(reduce_target_space=True)
|
||||
multilingualDataset = MultilingualDataset(dataset_name="webis-cls-unprocessed")
|
||||
|
||||
Xte = [text[0] for text in data[lang]["books"]["test"]]
|
||||
# Yte = np.expand_dims([text[1] for text in data[lang]["books"]["test"]], axis=1)
|
||||
Yte = np.vstack([text[1] for text in data[lang]["books"]["test"]])
|
||||
for lang in LANGS:
|
||||
# Xtr = [text["summary"] for text in data[lang]["books"]["train"]]
|
||||
Xtr = [text["text"] for text in data[lang]["books"]["train"]]
|
||||
Xtr += [text["text"] for text in data[lang]["dvd"]["train"]]
|
||||
Xtr += [text["text"] for text in data[lang]["music"]["train"]]
|
||||
|
||||
Ytr =[text["rating"] for text in data[lang]["books"]["train"]]
|
||||
Ytr += [text["rating"] for text in data[lang]["dvd"]["train"]]
|
||||
Ytr += [text["rating"] for text in data[lang]["music"]["train"]]
|
||||
|
||||
Ytr = np.vstack(Ytr)
|
||||
|
||||
Xte = [text["text"] for text in data[lang]["books"]["test"]]
|
||||
Xte += [text["text"] for text in data[lang]["dvd"]["test"]]
|
||||
Xte += [text["text"] for text in data[lang]["music"]["test"]]
|
||||
|
||||
|
||||
Yte = [text["rating"] for text in data[lang]["books"]["test"]]
|
||||
Yte += [text["rating"] for text in data[lang]["dvd"]["test"]]
|
||||
Yte += [text["rating"] for text in data[lang]["music"]["test"]]
|
||||
|
||||
Yte = np.vstack(Yte)
|
||||
|
||||
multilingualDataset.add(
|
||||
lang=lang,
|
||||
|
|
@ -82,5 +172,7 @@ if __name__ == "__main__":
|
|||
te_ids=None,
|
||||
)
|
||||
multilingualDataset.save(
|
||||
os.path.expanduser("~/datasets/cls-acl10-processed/cls-acl10-processed.pkl")
|
||||
os.path.expanduser(
|
||||
"~/datasets/cls-acl10-unprocessed/cls-acl10-unprocessed-all.pkl"
|
||||
)
|
||||
)
|
||||
|
|
|
|||
|
|
@ -62,14 +62,29 @@ class gFunDataset:
|
|||
)
|
||||
self.mlb = self.get_label_binarizer(self.labels)
|
||||
|
||||
elif "cls" in self.dataset_dir.lower():
|
||||
print(f"- Loading CLS dataset from {self.dataset_dir}")
|
||||
# WEBIS-CLS (processed)
|
||||
elif (
|
||||
"cls" in self.dataset_dir.lower()
|
||||
and "unprocessed" not in self.dataset_dir.lower()
|
||||
):
|
||||
print(f"- Loading WEBIS-CLS (processed) dataset from {self.dataset_dir}")
|
||||
self.dataset_name = "cls"
|
||||
self.dataset, self.labels, self.data_langs = self._load_multilingual(
|
||||
self.dataset_name, self.dataset_dir, self.nrows
|
||||
)
|
||||
self.mlb = self.get_label_binarizer(self.labels)
|
||||
|
||||
# WEBIS-CLS (unprocessed)
|
||||
elif (
|
||||
"cls" in self.dataset_dir.lower()
|
||||
and "unprocessed" in self.dataset_dir.lower()
|
||||
):
|
||||
print(f"- Loading WEBIS-CLS (unprocessed) dataset from {self.dataset_dir}")
|
||||
self.dataset_name = "cls"
|
||||
self.dataset, self.labels, self.data_langs = self._load_multilingual(
|
||||
self.dataset_name, self.dataset_dir, self.nrows
|
||||
)
|
||||
self.mlb = self.get_label_binarizer(self.labels)
|
||||
self.show_dimension()
|
||||
|
||||
return
|
||||
|
|
|
|||
|
|
@ -23,6 +23,7 @@ def get_dataset(dataset_name, args):
|
|||
"rcv1-2",
|
||||
"glami",
|
||||
"cls",
|
||||
"webis",
|
||||
], "dataset not supported"
|
||||
|
||||
RCV_DATAPATH = expanduser(
|
||||
|
|
@ -37,6 +38,10 @@ def get_dataset(dataset_name, args):
|
|||
|
||||
GLAMI_DATAPATH = expanduser("~/datasets/GLAMI-1M-dataset")
|
||||
|
||||
WEBIS_CLS = expanduser(
|
||||
"~/datasets/cls-acl10-unprocessed/cls-acl10-unprocessed-all.pkl"
|
||||
)
|
||||
|
||||
if dataset_name == "multinews":
|
||||
# TODO: convert to gFunDataset
|
||||
raise NotImplementedError
|
||||
|
|
@ -91,6 +96,15 @@ def get_dataset(dataset_name, args):
|
|||
is_multilabel=False,
|
||||
nrows=args.nrows,
|
||||
)
|
||||
|
||||
elif dataset_name == "webis":
|
||||
dataset = gFunDataset(
|
||||
dataset_dir=WEBIS_CLS,
|
||||
is_textual=True,
|
||||
is_visual=False,
|
||||
is_multilabel=False,
|
||||
nrows=args.nrows,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return dataset
|
||||
|
|
|
|||
|
|
@ -1,8 +1,9 @@
|
|||
from joblib import Parallel, delayed
|
||||
from collections import defaultdict
|
||||
|
||||
from evaluation.metrics import *
|
||||
from sklearn.metrics import accuracy_score, top_k_accuracy_score, f1_score
|
||||
# from evaluation.metrics import *
|
||||
import numpy as np
|
||||
from sklearn.metrics import accuracy_score, top_k_accuracy_score, f1_score, precision_score, recall_score
|
||||
|
||||
|
||||
def evaluation_metrics(y, y_, clf_type):
|
||||
|
|
@ -13,13 +14,17 @@ def evaluation_metrics(y, y_, clf_type):
|
|||
# TODO: we need logits top_k_accuracy_score(y, y_, k=10),
|
||||
f1_score(y, y_, average="macro", zero_division=1),
|
||||
f1_score(y, y_, average="micro"),
|
||||
precision_score(y, y_, zero_division=1, average="macro"),
|
||||
recall_score(y, y_, zero_division=1, average="macro"),
|
||||
)
|
||||
elif clf_type == "multilabel":
|
||||
return (
|
||||
macroF1(y, y_),
|
||||
microF1(y, y_),
|
||||
macroK(y, y_),
|
||||
microK(y, y_),
|
||||
f1_score(y, y_, average="macro", zero_division=1),
|
||||
f1_score(y, y_, average="micro"),
|
||||
0,
|
||||
0,
|
||||
# macroK(y, y_),
|
||||
# microK(y, y_),
|
||||
)
|
||||
else:
|
||||
raise ValueError("clf_type must be either 'singlelabel' or 'multilabel'")
|
||||
|
|
@ -48,8 +53,10 @@ def log_eval(l_eval, phase="training", clf_type="multilabel", verbose=True):
|
|||
|
||||
if clf_type == "multilabel":
|
||||
for lang in l_eval.keys():
|
||||
macrof1, microf1, macrok, microk = l_eval[lang]
|
||||
metrics.append([macrof1, microf1, macrok, microk])
|
||||
# macrof1, microf1, macrok, microk = l_eval[lang]
|
||||
# metrics.append([macrof1, microf1, macrok, microk])
|
||||
macrof1, microf1, precision, recall = l_eval[lang]
|
||||
metrics.append([macrof1, microf1, precision, recall])
|
||||
if phase != "validation":
|
||||
print(f"Lang {lang}: macro-F1 = {macrof1:.3f} micro-F1 = {microf1:.3f}")
|
||||
averages = np.mean(np.array(metrics), axis=0)
|
||||
|
|
@ -69,12 +76,15 @@ def log_eval(l_eval, phase="training", clf_type="multilabel", verbose=True):
|
|||
# "acc10", # "accuracy-at-10",
|
||||
"MF1", # "macro-F1",
|
||||
"mF1", # "micro-F1",
|
||||
"precision",
|
||||
"recall"
|
||||
]
|
||||
for lang in l_eval.keys():
|
||||
# acc, top5, top10, macrof1, microf1 = l_eval[lang]
|
||||
acc, macrof1, microf1 = l_eval[lang]
|
||||
acc, macrof1, microf1, precision, recall= l_eval[lang]
|
||||
# metrics.append([acc, top5, top10, macrof1, microf1])
|
||||
metrics.append([acc, macrof1, microf1])
|
||||
# metrics.append([acc, macrof1, microf1])
|
||||
metrics.append([acc, macrof1, microf1, precision, recall])
|
||||
|
||||
for m, v in zip(_metrics, l_eval[lang]):
|
||||
lang_metrics[m][lang] = v
|
||||
|
|
@ -82,7 +92,8 @@ def log_eval(l_eval, phase="training", clf_type="multilabel", verbose=True):
|
|||
if phase != "validation":
|
||||
print(
|
||||
# f"Lang {lang}: acc = {acc:.3f} acc-top5 = {top5:.3f} acc-top10 = {top10:.3f} macro-F1: {macrof1:.3f} micro-F1 = {microf1:.3f}"
|
||||
f"Lang {lang}: acc = {acc:.3f} macro-F1: {macrof1:.3f} micro-F1 = {microf1:.3f}"
|
||||
# f"Lang {lang}: acc = {acc:.3f} macro-F1: {macrof1:.3f} micro-F1 = {microf1:.3f}"
|
||||
f"Lang {lang}: acc = {acc:.3f} macro-F1: {macrof1:.3f} micro-F1 = {microf1:.3f} pr = {precision:.3f} re = {recall:.3f}"
|
||||
)
|
||||
averages = np.mean(np.array(metrics), axis=0)
|
||||
if verbose:
|
||||
|
|
|
|||
|
|
@ -124,6 +124,16 @@ class GeneralizedFunnelling:
|
|||
epochs=self.epochs,
|
||||
attn_stacking_type=attn_stacking,
|
||||
)
|
||||
|
||||
self._model_id = get_unique_id(
|
||||
self.dataset_name,
|
||||
self.posteriors_vgf,
|
||||
self.multilingual_vgf,
|
||||
self.wce_vgf,
|
||||
self.textual_trf_vgf,
|
||||
self.visual_trf_vgf,
|
||||
self.aggfunc,
|
||||
)
|
||||
return self
|
||||
|
||||
if self.posteriors_vgf:
|
||||
|
|
@ -317,7 +327,7 @@ class GeneralizedFunnelling:
|
|||
|
||||
for vgf in self.first_tier_learners:
|
||||
vgf_config = vgf.get_config()
|
||||
c.update(vgf_config)
|
||||
c.update({vgf_config["name"]: vgf_config})
|
||||
|
||||
gfun_config = {
|
||||
"id": self._model_id,
|
||||
|
|
@ -372,6 +382,7 @@ class GeneralizedFunnelling:
|
|||
"rb",
|
||||
) as vgf:
|
||||
first_tier_learners.append(pickle.load(vgf))
|
||||
print(f"- loaded trained VanillaFun VGF")
|
||||
if self.multilingual_vgf:
|
||||
with open(
|
||||
os.path.join(
|
||||
|
|
@ -380,6 +391,7 @@ class GeneralizedFunnelling:
|
|||
"rb",
|
||||
) as vgf:
|
||||
first_tier_learners.append(pickle.load(vgf))
|
||||
print(f"- loaded trained Multilingual VGF")
|
||||
if self.wce_vgf:
|
||||
with open(
|
||||
os.path.join(
|
||||
|
|
@ -388,20 +400,38 @@ class GeneralizedFunnelling:
|
|||
"rb",
|
||||
) as vgf:
|
||||
first_tier_learners.append(pickle.load(vgf))
|
||||
print(f"- loaded trained WCE VGF")
|
||||
if self.textual_trf_vgf:
|
||||
with open(
|
||||
os.path.join(
|
||||
"models", "vgfs", "transformer", f"transformerGen_{model_id}.pkl"
|
||||
"models",
|
||||
"vgfs",
|
||||
"textual_transformer",
|
||||
f"textualTransformerGen_{model_id}.pkl",
|
||||
),
|
||||
"rb",
|
||||
) as vgf:
|
||||
first_tier_learners.append(pickle.load(vgf))
|
||||
print(f"- loaded trained Textual Transformer VGF")
|
||||
if self.visual_trf_vgf:
|
||||
with open(
|
||||
os.path.join(
|
||||
"models",
|
||||
"vgfs",
|
||||
"visual_transformer",
|
||||
f"visualTransformerGen_{model_id}.pkl",
|
||||
),
|
||||
"rb",
|
||||
print(f"- loaded trained Visual Transformer VGF"),
|
||||
) as vgf:
|
||||
first_tier_learners.append(pickle.load(vgf))
|
||||
|
||||
if load_meta:
|
||||
with open(
|
||||
os.path.join("models", "metaclassifier", f"meta_{model_id}.pkl"), "rb"
|
||||
) as f:
|
||||
metaclassifier = pickle.load(f)
|
||||
print(f"- loaded trained metaclassifier")
|
||||
else:
|
||||
metaclassifier = None
|
||||
return first_tier_learners, metaclassifier, vectorizer
|
||||
|
|
|
|||
|
|
@ -45,11 +45,12 @@ class MT5ForSequenceClassification(nn.Module):
|
|||
|
||||
def save_pretrained(self, checkpoint_dir):
|
||||
torch.save(self.state_dict(), checkpoint_dir + ".pt")
|
||||
return
|
||||
return self
|
||||
|
||||
def from_pretrained(self, checkpoint_dir):
|
||||
checkpoint_dir += ".pt"
|
||||
return self.load_state_dict(torch.load(checkpoint_dir))
|
||||
self.load_state_dict(torch.load(checkpoint_dir))
|
||||
return self
|
||||
|
||||
|
||||
class TextualTransformerGen(ViewGen, TransformerGen):
|
||||
|
|
@ -113,6 +114,7 @@ class TextualTransformerGen(ViewGen, TransformerGen):
|
|||
model_name, num_labels=num_labels, output_hidden_states=True
|
||||
)
|
||||
else:
|
||||
model_name = "models/vgfs/trained_transformer/mbert-sentiment/checkpoint-8500" # TODO hardcoded to pre-traiend mbert
|
||||
return AutoModelForSequenceClassification.from_pretrained(
|
||||
model_name, num_labels=num_labels, output_hidden_states=True
|
||||
)
|
||||
|
|
@ -144,58 +146,60 @@ class TextualTransformerGen(ViewGen, TransformerGen):
|
|||
self.model_name, num_labels=self.num_labels
|
||||
)
|
||||
|
||||
tr_lX, tr_lY, val_lX, val_lY = self.get_train_val_data(
|
||||
lX, lY, split=0.2, seed=42, modality="text"
|
||||
)
|
||||
self.model.to("cuda")
|
||||
|
||||
tra_dataloader = self.build_dataloader(
|
||||
tr_lX,
|
||||
tr_lY,
|
||||
processor_fn=self._tokenize,
|
||||
torchDataset=MultilingualDatasetTorch,
|
||||
batch_size=self.batch_size,
|
||||
split="train",
|
||||
shuffle=True,
|
||||
)
|
||||
|
||||
val_dataloader = self.build_dataloader(
|
||||
val_lX,
|
||||
val_lY,
|
||||
processor_fn=self._tokenize,
|
||||
torchDataset=MultilingualDatasetTorch,
|
||||
batch_size=self.batch_size_eval,
|
||||
split="val",
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
experiment_name = f"{self.model_name.replace('/', '-')}-{self.epochs}-{self.batch_size}-{self.dataset_name}"
|
||||
|
||||
trainer = Trainer(
|
||||
model=self.model,
|
||||
optimizer_name="adamW",
|
||||
lr=self.lr,
|
||||
device=self.device,
|
||||
loss_fn=torch.nn.CrossEntropyLoss(),
|
||||
print_steps=self.print_steps,
|
||||
evaluate_step=self.evaluate_step,
|
||||
patience=self.patience,
|
||||
experiment_name=experiment_name,
|
||||
checkpoint_path=os.path.join(
|
||||
"models",
|
||||
"vgfs",
|
||||
"transformer",
|
||||
self._format_model_name(self.model_name),
|
||||
),
|
||||
vgf_name="textual_trf",
|
||||
classification_type=self.clf_type,
|
||||
n_jobs=self.n_jobs,
|
||||
scheduler_name=self.scheduler,
|
||||
)
|
||||
trainer.train(
|
||||
train_dataloader=tra_dataloader,
|
||||
eval_dataloader=val_dataloader,
|
||||
epochs=self.epochs,
|
||||
)
|
||||
# tr_lX, tr_lY, val_lX, val_lY = self.get_train_val_data(
|
||||
# lX, lY, split=0.2, seed=42, modality="text"
|
||||
# )
|
||||
#
|
||||
# tra_dataloader = self.build_dataloader(
|
||||
# tr_lX,
|
||||
# tr_lY,
|
||||
# processor_fn=self._tokenize,
|
||||
# torchDataset=MultilingualDatasetTorch,
|
||||
# batch_size=self.batch_size,
|
||||
# split="train",
|
||||
# shuffle=True,
|
||||
# )
|
||||
#
|
||||
# val_dataloader = self.build_dataloader(
|
||||
# val_lX,
|
||||
# val_lY,
|
||||
# processor_fn=self._tokenize,
|
||||
# torchDataset=MultilingualDatasetTorch,
|
||||
# batch_size=self.batch_size_eval,
|
||||
# split="val",
|
||||
# shuffle=False,
|
||||
# )
|
||||
#
|
||||
# experiment_name = f"{self.model_name.replace('/', '-')}-{self.epochs}-{self.batch_size}-{self.dataset_name}"
|
||||
#
|
||||
# trainer = Trainer(
|
||||
# model=self.model,
|
||||
# optimizer_name="adamW",
|
||||
# lr=self.lr,
|
||||
# device=self.device,
|
||||
# loss_fn=torch.nn.CrossEntropyLoss(),
|
||||
# print_steps=self.print_steps,
|
||||
# evaluate_step=self.evaluate_step,
|
||||
# patience=self.patience,
|
||||
# experiment_name=experiment_name,
|
||||
# checkpoint_path=os.path.join(
|
||||
# "models",
|
||||
# "vgfs",
|
||||
# "trained_transformer",
|
||||
# self._format_model_name(self.model_name),
|
||||
# ),
|
||||
# vgf_name="textual_trf",
|
||||
# classification_type=self.clf_type,
|
||||
# n_jobs=self.n_jobs,
|
||||
# scheduler_name=self.scheduler,
|
||||
# )
|
||||
# trainer.train(
|
||||
# train_dataloader=tra_dataloader,
|
||||
# eval_dataloader=val_dataloader,
|
||||
# epochs=self.epochs,
|
||||
# )
|
||||
|
||||
if self.probabilistic:
|
||||
self.feature2posterior_projector.fit(self.transform(lX), lY)
|
||||
|
|
@ -224,7 +228,6 @@ class TextualTransformerGen(ViewGen, TransformerGen):
|
|||
with torch.no_grad():
|
||||
for input_ids, lang in dataloader:
|
||||
input_ids = input_ids.to(self.device)
|
||||
# TODO: check this
|
||||
if isinstance(self.model, MT5ForSequenceClassification):
|
||||
batch_embeddings = self.model(input_ids).pooled.cpu().numpy()
|
||||
else:
|
||||
|
|
@ -277,4 +280,4 @@ class TextualTransformerGen(ViewGen, TransformerGen):
|
|||
|
||||
def get_config(self):
|
||||
c = super().get_config()
|
||||
return {"textual_trf": c}
|
||||
return {"name": "textual-trasnformer VGF", "textual_trf": c}
|
||||
|
|
|
|||
|
|
@ -65,3 +65,6 @@ class VanillaFunGen(ViewGen):
|
|||
with open(_path, "wb") as f:
|
||||
pickle.dump(self, f)
|
||||
return self
|
||||
|
||||
def get_config(self):
|
||||
return {"name": "Vanilla Funnelling VGF"}
|
||||
|
|
|
|||
|
|
@ -186,4 +186,4 @@ class VisualTransformerGen(ViewGen, TransformerGen):
|
|||
return self
|
||||
|
||||
def get_config(self):
|
||||
return {"visual_trf": super().get_config()}
|
||||
return {"name": "visual-transformer VGF", "visual_trf": super().get_config()}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,191 @@
|
|||
import torch
|
||||
from transformers import (
|
||||
AutoModelForSequenceClassification,
|
||||
AutoTokenizer,
|
||||
DataCollatorWithPadding,
|
||||
TrainingArguments,
|
||||
)
|
||||
from gfun.vgfs.commons import Trainer
|
||||
from datasets import load_dataset, DatasetDict
|
||||
|
||||
from transformers import Trainer
|
||||
|
||||
import transformers
|
||||
import evaluate
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
|
||||
def init_callbacks(patience=-1, nosave=False):
|
||||
callbacks = []
|
||||
if patience != -1 and not nosave:
|
||||
callbacks.append(transformers.EarlyStoppingCallback(early_stopping_patience=patience))
|
||||
return callbacks
|
||||
|
||||
|
||||
def init_model(model_name):
|
||||
if model_name == "mbert":
|
||||
hf_name = "bert-base-multilingual-cased"
|
||||
elif model_name == "xlm-roberta":
|
||||
hf_name = "xlm-roberta-base"
|
||||
else:
|
||||
raise NotImplementedError
|
||||
tokenizer = AutoTokenizer.from_pretrained(hf_name)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(hf_name, num_labels=3)
|
||||
return tokenizer, model
|
||||
|
||||
def main(args):
|
||||
tokenizer, model = init_model(args.model)
|
||||
|
||||
data = load_dataset(
|
||||
"json",
|
||||
data_files={
|
||||
"train": "local_datasets/webis-cls/all-domains/train.json",
|
||||
"test": "local_datasets/webis-cls/all-domains/test.json",
|
||||
},
|
||||
)
|
||||
|
||||
def process_sample(sample):
|
||||
inputs = sample["text"]
|
||||
ratings = [r - 1 for r in sample["rating"]]
|
||||
targets = torch.zeros((len(inputs), 3), dtype=float)
|
||||
lang_mapper = {
|
||||
lang: lang_id for lang_id, lang in enumerate(set(sample["lang"]))
|
||||
}
|
||||
lang_ids = [lang_mapper[l] for l in sample["lang"]]
|
||||
for i, r in enumerate(ratings):
|
||||
targets[i][r - 1] = 1
|
||||
|
||||
model_inputs = tokenizer(inputs, max_length=512, truncation=True)
|
||||
model_inputs["labels"] = targets
|
||||
model_inputs["lang_ids"] = torch.tensor(lang_ids)
|
||||
return model_inputs
|
||||
|
||||
data = data.map(
|
||||
process_sample,
|
||||
batched=True,
|
||||
num_proc=4,
|
||||
load_from_cache_file=True,
|
||||
remove_columns=["text", "category", "rating", "summary", "title"],
|
||||
)
|
||||
train_val_splits = data["train"].train_test_split(test_size=0.2, seed=42)
|
||||
data.set_format("torch")
|
||||
data = DatasetDict(
|
||||
{
|
||||
"train": train_val_splits["train"],
|
||||
"validation": train_val_splits["test"],
|
||||
"test": data["test"],
|
||||
}
|
||||
)
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
||||
callbacks = init_callbacks(args.patience, args.nosave)
|
||||
|
||||
f1_metric = evaluate.load("f1")
|
||||
accuracy_metric = evaluate.load("accuracy")
|
||||
precision_metric = evaluate.load("precision")
|
||||
recall_metric = evaluate.load("recall")
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{args.model}-sentiment",
|
||||
do_train=True,
|
||||
evaluation_strategy="steps",
|
||||
per_device_train_batch_size=args.batch,
|
||||
per_device_eval_batch_size=args.batch,
|
||||
gradient_accumulation_steps=args.gradacc,
|
||||
eval_accumulation_steps=10,
|
||||
learning_rate=args.lr,
|
||||
weight_decay=0.1,
|
||||
max_grad_norm=5.0,
|
||||
num_train_epochs=args.epochs,
|
||||
lr_scheduler_type=args.scheduler,
|
||||
warmup_steps=1000,
|
||||
logging_strategy="steps",
|
||||
logging_first_step=True,
|
||||
logging_steps=args.steplog,
|
||||
seed=42,
|
||||
fp16=args.fp16,
|
||||
load_best_model_at_end=False if args.nosave else True,
|
||||
save_strategy="no" if args.nosave else "steps",
|
||||
save_total_limit=3,
|
||||
eval_steps=args.stepeval,
|
||||
run_name=f"{args.model}-sentiment-run",
|
||||
disable_tqdm=False,
|
||||
log_level="warning",
|
||||
report_to=["wandb"] if args.wandb else "none",
|
||||
optim="adamw_torch",
|
||||
)
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds = eval_preds.predictions.argmax(-1)
|
||||
targets = eval_preds.label_ids.argmax(-1)
|
||||
setting = "macro"
|
||||
f1_score_macro = f1_metric.compute(
|
||||
predictions=preds, references=targets, average="macro"
|
||||
)
|
||||
f1_score_micro = f1_metric.compute(
|
||||
predictions=preds, references=targets, average="micro"
|
||||
)
|
||||
accuracy_score = accuracy_metric.compute(predictions=preds, references=targets)
|
||||
precision_score = precision_metric.compute(
|
||||
predictions=preds, references=targets, average=setting, zero_division=1
|
||||
)
|
||||
recall_score = recall_metric.compute(
|
||||
predictions=preds, references=targets, average=setting, zero_division=1
|
||||
)
|
||||
results = {
|
||||
"macro_f1score": f1_score_macro["f1"],
|
||||
"micro_f1score": f1_score_micro["f1"],
|
||||
"accuracy": accuracy_score["accuracy"],
|
||||
"precision": precision_score["precision"],
|
||||
"recall": recall_score["recall"],
|
||||
}
|
||||
results = {k: round(v, 4) for k, v in results.items()}
|
||||
return results
|
||||
|
||||
if args.wandb:
|
||||
import wandb
|
||||
wandb.init(entity="andreapdr", project=f"gfun-senti-hf", name="mbert-sent", config=vars(args))
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=data["train"],
|
||||
eval_dataset=data["validation"],
|
||||
compute_metrics=compute_metrics,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
|
||||
print("- Training:")
|
||||
trainer.train()
|
||||
|
||||
|
||||
print("- Testing:")
|
||||
test_results = trainer.evaluate(eval_dataset=data["test"])
|
||||
print(test_results)
|
||||
|
||||
exit()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
|
||||
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument("--model", type=str, metavar="", default="mbert")
|
||||
parser.add_argument("--lr", type=float, metavar="", default=1e-5, help="Set learning rate",)
|
||||
parser.add_argument("--scheduler", type=str, metavar="", default="linear", help="Accepted: [\"cosine\", \"cosine-reset\", \"cosine-warmup\", \"cosine-warmup-reset\", \"constant\"]")
|
||||
parser.add_argument("--batch", type=int, metavar="", default=16, help="Set batch size")
|
||||
parser.add_argument("--gradacc", type=int, metavar="", default=1, help="Gradient accumulation steps")
|
||||
parser.add_argument("--epochs", type=int, metavar="", default=100, help="Set epochs")
|
||||
parser.add_argument("--stepeval", type=int, metavar="", default=50, help="Run evaluation every n steps")
|
||||
parser.add_argument("--steplog", type=int, metavar="", default=100, help="Log training every n steps")
|
||||
parser.add_argument("--patience", type=int, metavar="", default=10, help="EarlyStopper patience")
|
||||
parser.add_argument("--fp16", action="store_true", help="Use fp16 precision")
|
||||
parser.add_argument("--wandb", action="store_true", help="Log to wandb")
|
||||
parser.add_argument("--nosave", action="store_true", help="Avoid saving model")
|
||||
# parser.add_argument("--onlytest", action="store_true", help="Simply test model on test set")
|
||||
# parser.add_argument("--sanity", action="store_true", help="Train and evaluate on the same reduced (1000) data")
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
13
main.py
13
main.py
|
|
@ -1,8 +1,5 @@
|
|||
import os
|
||||
import wandb
|
||||
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
|
||||
from argparse import ArgumentParser
|
||||
from time import time
|
||||
|
||||
|
|
@ -12,16 +9,9 @@ from gfun.generalizedFunnelling import GeneralizedFunnelling
|
|||
|
||||
"""
|
||||
TODO:
|
||||
- Transformers VGFs:
|
||||
- scheduler with warmup and cosine
|
||||
- freeze params method
|
||||
- General:
|
||||
[!] zero-shot setup
|
||||
- CLS dataset is loading only "books" domain data
|
||||
- documents should be trimmed to the same length (for SVMs we are using way too long tokens)
|
||||
- Attention Aggregator:
|
||||
- experiment with weight init of Attention-aggregator
|
||||
- FFNN posterior-probabilities' dependent
|
||||
- Docs:
|
||||
- add documentations sphinx
|
||||
"""
|
||||
|
|
@ -150,7 +140,6 @@ def main(args):
|
|||
wandb.log(gfun_res)
|
||||
|
||||
log_barplot_wandb(lang_metrics_gfun, title_affix="per language")
|
||||
log_barplot_wandb(avg_metrics_gfun, title_affix="averages")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
@ -178,7 +167,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--features", action="store_false")
|
||||
parser.add_argument("--aggfunc", type=str, default="mean")
|
||||
# transformer parameters ---------------
|
||||
parser.add_argument("--epochs", type=int, default=100)
|
||||
parser.add_argument("--epochs", type=int, default=5)
|
||||
parser.add_argument("--textual_trf_name", type=str, default="mbert")
|
||||
parser.add_argument("--batch_size", type=int, default=32)
|
||||
parser.add_argument("--eval_batch_size", type=int, default=128)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,28 @@
|
|||
#!bin/bash
|
||||
|
||||
config="-m"
|
||||
|
||||
echo "[Running gFun config: $config]"
|
||||
|
||||
epochs=100
|
||||
njobs=-1
|
||||
clf=singlelabel
|
||||
patience=5
|
||||
eval_every=5
|
||||
text_len=256
|
||||
text_lr=1e-4
|
||||
bsize=64
|
||||
txt_model=mbert
|
||||
|
||||
python main.py $config \
|
||||
-d webis \
|
||||
--epochs $epochs \
|
||||
--n_jobs $njobs \
|
||||
--clf_type $clf \
|
||||
--patience $patience \
|
||||
--evaluate_step $eval_every \
|
||||
--batch_size $bsize \
|
||||
--max_length $text_len \
|
||||
--textual_lr $text_lr \
|
||||
--textual_trf_name $txt_model \
|
||||
--load_trained webis_pmwt_mean_230621
|
||||
Loading…
Reference in New Issue