devel #1
|
@ -49,7 +49,7 @@ class MultiNewsDataset:
|
|||
from os import listdir
|
||||
|
||||
if self.debug:
|
||||
return ["it"]
|
||||
return ["it", "en"]
|
||||
|
||||
return tuple(sorted([folder for folder in listdir(self.data_dir)]))
|
||||
|
||||
|
@ -67,7 +67,7 @@ class MultiNewsDataset:
|
|||
def _count_lang_labels(self, labels):
|
||||
lang_labels = set()
|
||||
for l in labels:
|
||||
lang_labels.update(l[-1])
|
||||
lang_labels.update(l)
|
||||
return len(lang_labels)
|
||||
|
||||
def export_to_torch_dataset(self, tokenizer_id):
|
||||
|
@ -125,11 +125,14 @@ class MultiModalDataset:
|
|||
with open(join(self.data_dir, news_folder, fname_doc)) as f:
|
||||
html_doc = f.read()
|
||||
index_path = join(self.data_dir, news_folder, "index.html")
|
||||
if ".jpg" not in listdir(join(self.data_dir, news_folder)):
|
||||
if not any(
|
||||
File.endswith(".jpg")
|
||||
for File in listdir(join(self.data_dir, news_folder))
|
||||
):
|
||||
img_link, img = self.get_images(index_path)
|
||||
self.save_img(join(self.data_dir, news_folder, "img.jpg"), img)
|
||||
else:
|
||||
img = Image.open(join(self.data_dir, news_folder, "img.jpg"))
|
||||
# TODO: convert img to PIL image
|
||||
img = Image.open(join(self.data_dir, news_folder, "img.jpg"))
|
||||
clean_doc, doc_labels = self.preprocess_html(html_doc)
|
||||
data.append((fname_doc, clean_doc, html_doc, img))
|
||||
labels.append(doc_labels)
|
||||
|
|
|
@ -9,7 +9,7 @@ import numpy as np
|
|||
from vgfs.commons import TfidfVectorizerMultilingual
|
||||
from vgfs.learners.svms import MetaClassifier, get_learner
|
||||
from vgfs.multilingualGen import MultilingualGen
|
||||
from vgfs.transformerGen import TransformerGen
|
||||
from gfun.vgfs.textualTransformerGen import TextualTransformerGen
|
||||
from vgfs.vanillaFun import VanillaFunGen
|
||||
from vgfs.wceGen import WceGen
|
||||
|
||||
|
@ -98,7 +98,7 @@ class GeneralizedFunnelling:
|
|||
self.first_tier_learners.append(wce_vgf)
|
||||
|
||||
if self.trasformer_vgf:
|
||||
transformer_vgf = TransformerGen(
|
||||
transformer_vgf = TextualTransformerGen(
|
||||
model_name=self.transformer_name,
|
||||
lr=self.lr_transformer,
|
||||
epochs=self.epochs,
|
||||
|
|
|
@ -1,7 +1,14 @@
|
|||
from sklearn.preprocessing import normalize
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.decomposition import TruncatedSVD
|
||||
import os
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from sklearn.decomposition import TruncatedSVD
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.preprocessing import normalize
|
||||
from torch.optim import AdamW
|
||||
|
||||
from evaluation.evaluate import evaluate, log_eval
|
||||
|
||||
|
||||
def _normalize(lX, l2=True):
|
||||
|
@ -30,6 +37,34 @@ def remove_pc(X, npc=1):
|
|||
return XX
|
||||
|
||||
|
||||
def compute_pc(X, npc=1):
|
||||
"""
|
||||
Compute the principal components.
|
||||
:param X: X[i,:] is a data point
|
||||
:param npc: number of principal components to remove
|
||||
:return: component_[i,:] is the i-th pc
|
||||
"""
|
||||
if isinstance(X, np.matrix):
|
||||
X = np.asarray(X)
|
||||
svd = TruncatedSVD(n_components=npc, n_iter=7, random_state=0)
|
||||
svd.fit(X)
|
||||
return svd.components_
|
||||
|
||||
|
||||
def predict(logits, classification_type="multilabel"):
|
||||
"""
|
||||
Converts soft precictions to hard predictions [0,1]
|
||||
"""
|
||||
if classification_type == "multilabel":
|
||||
prediction = torch.sigmoid(logits) > 0.5
|
||||
elif classification_type == "singlelabel":
|
||||
prediction = torch.argmax(logits, dim=1).view(-1, 1)
|
||||
else:
|
||||
print("unknown classification type")
|
||||
|
||||
return prediction.detach().cpu().numpy()
|
||||
|
||||
|
||||
class TfidfVectorizerMultilingual:
|
||||
def __init__(self, **kwargs):
|
||||
self.kwargs = kwargs
|
||||
|
@ -60,15 +95,130 @@ class TfidfVectorizerMultilingual:
|
|||
return self.vectorizer[l].build_analyzer()
|
||||
|
||||
|
||||
def compute_pc(X, npc=1):
|
||||
"""
|
||||
Compute the principal components.
|
||||
:param X: X[i,:] is a data point
|
||||
:param npc: number of principal components to remove
|
||||
:return: component_[i,:] is the i-th pc
|
||||
"""
|
||||
if isinstance(X, np.matrix):
|
||||
X = np.asarray(X)
|
||||
svd = TruncatedSVD(n_components=npc, n_iter=7, random_state=0)
|
||||
svd.fit(X)
|
||||
return svd.components_
|
||||
class Trainer:
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
optimizer_name,
|
||||
device,
|
||||
loss_fn,
|
||||
lr,
|
||||
print_steps,
|
||||
evaluate_step,
|
||||
patience,
|
||||
experiment_name,
|
||||
):
|
||||
self.device = device
|
||||
self.model = model.to(device)
|
||||
self.optimizer = self.init_optimizer(optimizer_name, lr)
|
||||
self.evaluate_steps = evaluate_step
|
||||
self.loss_fn = loss_fn.to(device)
|
||||
self.print_steps = print_steps
|
||||
self.earlystopping = EarlyStopping(
|
||||
patience=patience,
|
||||
checkpoint_path="models/vgfs/transformers/",
|
||||
verbose=True,
|
||||
experiment_name=experiment_name,
|
||||
)
|
||||
|
||||
def init_optimizer(self, optimizer_name, lr):
|
||||
if optimizer_name.lower() == "adamw":
|
||||
return AdamW(self.model.parameters(), lr=lr)
|
||||
else:
|
||||
raise ValueError(f"Optimizer {optimizer_name} not supported")
|
||||
|
||||
def train(self, train_dataloader, eval_dataloader, epochs=10):
|
||||
print(
|
||||
f"""- Training params:
|
||||
- epochs: {epochs}
|
||||
- learning rate: {self.optimizer.defaults['lr']}
|
||||
- train batch size: {train_dataloader.batch_size}
|
||||
- eval batch size: {eval_dataloader.batch_size}
|
||||
- max len: {train_dataloader.dataset.X.shape[-1]}\n""",
|
||||
)
|
||||
for epoch in range(epochs):
|
||||
self.train_epoch(train_dataloader, epoch)
|
||||
if (epoch + 1) % self.evaluate_steps == 0:
|
||||
metric_watcher = self.evaluate(eval_dataloader)
|
||||
stop = self.earlystopping(metric_watcher, self.model, epoch + 1)
|
||||
if stop:
|
||||
break
|
||||
return self.model
|
||||
|
||||
def train_epoch(self, dataloader, epoch):
|
||||
self.model.train()
|
||||
for b_idx, (x, y, lang) in enumerate(dataloader):
|
||||
self.optimizer.zero_grad()
|
||||
y_hat = self.model(x.to(self.device))
|
||||
loss = self.loss_fn(y_hat.logits, y.to(self.device))
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
if b_idx % self.print_steps == 0:
|
||||
print(f"Epoch: {epoch+1} Step: {b_idx+1} Loss: {loss:.4f}")
|
||||
return self
|
||||
|
||||
def evaluate(self, dataloader):
|
||||
self.model.eval()
|
||||
|
||||
lY = defaultdict(list)
|
||||
lY_hat = defaultdict(list)
|
||||
|
||||
for b_idx, (x, y, lang) in enumerate(dataloader):
|
||||
y_hat = self.model(x.to(self.device))
|
||||
loss = self.loss_fn(y_hat.logits, y.to(self.device))
|
||||
predictions = predict(y_hat.logits, classification_type="multilabel")
|
||||
|
||||
for l, _true, _pred in zip(lang, y, predictions):
|
||||
lY[l].append(_true.detach().cpu().numpy())
|
||||
lY_hat[l].append(_pred)
|
||||
|
||||
for lang in lY:
|
||||
lY[lang] = np.vstack(lY[lang])
|
||||
lY_hat[lang] = np.vstack(lY_hat[lang])
|
||||
|
||||
l_eval = evaluate(lY, lY_hat)
|
||||
average_metrics = log_eval(l_eval, phase="validation")
|
||||
return average_metrics[0] # macro-F1
|
||||
|
||||
|
||||
class EarlyStopping:
|
||||
def __init__(
|
||||
self,
|
||||
patience=5,
|
||||
min_delta=0,
|
||||
verbose=True,
|
||||
checkpoint_path="checkpoint.pt",
|
||||
experiment_name="experiment",
|
||||
):
|
||||
self.patience = patience
|
||||
self.min_delta = min_delta
|
||||
self.counter = 0
|
||||
self.best_score = 0
|
||||
self.best_epoch = None
|
||||
self.verbose = verbose
|
||||
self.checkpoint_path = checkpoint_path
|
||||
self.experiment_name = experiment_name
|
||||
|
||||
def __call__(self, validation, model, epoch):
|
||||
if validation > self.best_score:
|
||||
print(
|
||||
f"- earlystopping: Validation score improved from {self.best_score:.3f} to {validation:.3f}"
|
||||
)
|
||||
self.best_score = validation
|
||||
self.counter = 0
|
||||
# self.save_model(model)
|
||||
elif validation < (self.best_score + self.min_delta):
|
||||
self.counter += 1
|
||||
print(
|
||||
f"- earlystopping: Validation score decreased from {self.best_score:.3f} to {validation:.3f}, current patience: {self.patience - self.counter}"
|
||||
)
|
||||
if self.counter >= self.patience:
|
||||
if self.verbose:
|
||||
print(f"- earlystopping: Early stopping at epoch {epoch}")
|
||||
return True
|
||||
|
||||
def save_model(self, model):
|
||||
_checkpoint_dir = os.path.join(self.checkpoint_path, self.experiment_name)
|
||||
print(f"- saving model to {_checkpoint_dir}")
|
||||
os.makedirs(_checkpoint_dir, exist_ok=True)
|
||||
model.save_pretrained(_checkpoint_dir)
|
||||
|
|
|
@ -0,0 +1,390 @@
|
|||
import os
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import transformers
|
||||
from sklearn.model_selection import train_test_split
|
||||
from torch.optim import AdamW
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
||||
from vgfs.learners.svms import FeatureSet2Posteriors
|
||||
from vgfs.viewGen import ViewGen
|
||||
|
||||
from evaluation.evaluate import evaluate, log_eval
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
|
||||
# TODO: add support to loggers
|
||||
# TODO: multiple inheritance - maybe define a superclass for TransformerGenerator, whether it is a Textual or a Visual one, implementing dataset creation functions
|
||||
|
||||
|
||||
class TextualTransformerGen(ViewGen):
|
||||
def __init__(
|
||||
self,
|
||||
model_name,
|
||||
epochs=10,
|
||||
lr=1e-5,
|
||||
batch_size=4,
|
||||
batch_size_eval=32,
|
||||
max_length=512,
|
||||
print_steps=50,
|
||||
device="cpu",
|
||||
probabilistic=False,
|
||||
n_jobs=-1,
|
||||
evaluate_step=10,
|
||||
verbose=False,
|
||||
patience=5,
|
||||
):
|
||||
self.model_name = model_name
|
||||
self.device = device
|
||||
self.model = None
|
||||
self.lr = lr
|
||||
self.epochs = epochs
|
||||
self.tokenizer = None
|
||||
self.max_length = max_length
|
||||
self.batch_size = batch_size
|
||||
self.batch_size_eval = batch_size_eval
|
||||
self.print_steps = print_steps
|
||||
self.probabilistic = probabilistic
|
||||
self.n_jobs = n_jobs
|
||||
self.fitted = False
|
||||
self.datasets = {}
|
||||
self.evaluate_step = evaluate_step
|
||||
self.verbose = verbose
|
||||
self.patience = patience
|
||||
self._init()
|
||||
|
||||
def _init(self):
|
||||
if self.probabilistic:
|
||||
self.feature2posterior_projector = FeatureSet2Posteriors(
|
||||
n_jobs=self.n_jobs, verbose=False
|
||||
)
|
||||
self.model_name = self._get_model_name(self.model_name)
|
||||
print(
|
||||
f"- init TransformerModel model_name: {self.model_name}, device: {self.device}]"
|
||||
)
|
||||
|
||||
def _get_model_name(self, name):
|
||||
if "bert" == name:
|
||||
name_model = "bert-base-uncased"
|
||||
elif "mbert" == name:
|
||||
name_model = "bert-base-multilingual-uncased"
|
||||
elif "xlm" == name:
|
||||
name_model = "xlm-roberta-base"
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return name_model
|
||||
|
||||
def load_pretrained_model(self, model_name, num_labels):
|
||||
return AutoModelForSequenceClassification.from_pretrained(
|
||||
model_name, num_labels=num_labels, output_hidden_states=True
|
||||
)
|
||||
|
||||
def load_tokenizer(self, model_name):
|
||||
return AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
def init_model(self, model_name, num_labels):
|
||||
return self.load_pretrained_model(model_name, num_labels), self.load_tokenizer(
|
||||
model_name
|
||||
)
|
||||
|
||||
def get_train_val_data(self, lX, lY, split=0.2, seed=42):
|
||||
tr_lX, tr_lY, val_lX, val_lY = {}, {}, {}, {}
|
||||
|
||||
for lang in lX.keys():
|
||||
tr_X, val_X, tr_Y, val_Y = train_test_split(
|
||||
lX[lang], lY[lang], test_size=split, random_state=seed, shuffle=False
|
||||
)
|
||||
tr_lX[lang] = tr_X
|
||||
tr_lY[lang] = tr_Y
|
||||
val_lX[lang] = val_X
|
||||
val_lY[lang] = val_Y
|
||||
|
||||
return tr_lX, tr_lY, val_lX, val_lY
|
||||
|
||||
def build_dataloader(self, lX, lY, batch_size, split="train", shuffle=False):
|
||||
l_tokenized = {lang: self._tokenize(data) for lang, data in lX.items()}
|
||||
self.datasets[split] = MultilingualDatasetTorch(l_tokenized, lY, split=split)
|
||||
return DataLoader(self.datasets[split], batch_size=batch_size, shuffle=shuffle)
|
||||
|
||||
def _tokenize(self, X):
|
||||
return self.tokenizer(
|
||||
X,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=self.max_length,
|
||||
)
|
||||
|
||||
def fit(self, lX, lY):
|
||||
if self.fitted:
|
||||
return self
|
||||
print("- fitting Textual Transformer View Generating Function")
|
||||
_l = list(lX.keys())[0]
|
||||
self.num_labels = lY[_l].shape[-1]
|
||||
self.model, self.tokenizer = self.init_model(
|
||||
self.model_name, num_labels=self.num_labels
|
||||
)
|
||||
|
||||
tr_lX, tr_lY, val_lX, val_lY = self.get_train_val_data(
|
||||
lX, lY, split=0.2, seed=42
|
||||
)
|
||||
|
||||
tra_dataloader = self.build_dataloader(
|
||||
tr_lX, tr_lY, self.batch_size, split="train", shuffle=True
|
||||
)
|
||||
|
||||
val_dataloader = self.build_dataloader(
|
||||
val_lX, val_lY, self.batch_size_eval, split="val", shuffle=False
|
||||
)
|
||||
|
||||
experiment_name = f"{self.model_name}-{self.epochs}-{self.batch_size}"
|
||||
trainer = Trainer(
|
||||
model=self.model,
|
||||
optimizer_name="adamW",
|
||||
lr=self.lr,
|
||||
device=self.device,
|
||||
loss_fn=torch.nn.CrossEntropyLoss(),
|
||||
print_steps=self.print_steps,
|
||||
evaluate_step=self.evaluate_step,
|
||||
patience=self.patience,
|
||||
experiment_name=experiment_name,
|
||||
)
|
||||
trainer.train(
|
||||
train_dataloader=tra_dataloader,
|
||||
eval_dataloader=val_dataloader,
|
||||
epochs=self.epochs,
|
||||
)
|
||||
|
||||
if self.probabilistic:
|
||||
self.feature2posterior_projector.fit(self.transform(lX), lY)
|
||||
|
||||
self.fitted = True
|
||||
|
||||
return self
|
||||
|
||||
def transform(self, lX):
|
||||
_embeds = []
|
||||
l_embeds = defaultdict(list)
|
||||
|
||||
dataloader = self.build_dataloader(
|
||||
lX, lY=None, batch_size=self.batch_size_eval, split="whole", shuffle=False
|
||||
)
|
||||
|
||||
self.model.eval()
|
||||
with torch.no_grad():
|
||||
for input_ids, lang in dataloader:
|
||||
input_ids = input_ids.to(self.device)
|
||||
out = self.model(input_ids).hidden_states[-1]
|
||||
batch_embeddings = out[:, 0, :].cpu().numpy()
|
||||
_embeds.append((batch_embeddings, lang))
|
||||
|
||||
for embed, lang in _embeds:
|
||||
for sample_embed, sample_lang in zip(embed, lang):
|
||||
l_embeds[sample_lang].append(sample_embed)
|
||||
|
||||
if self.probabilistic and self.fitted:
|
||||
l_embeds = self.feature2posterior_projector.transform(l_embeds)
|
||||
|
||||
return l_embeds
|
||||
|
||||
def fit_transform(self, lX, lY):
|
||||
return self.fit(lX, lY).transform(lX)
|
||||
|
||||
def save_vgf(self, model_id):
|
||||
import pickle
|
||||
from os import makedirs
|
||||
from os.path import join
|
||||
|
||||
vgf_name = "transformerGen"
|
||||
_basedir = join("models", "vgfs", "transformer")
|
||||
makedirs(_basedir, exist_ok=True)
|
||||
_path = join(_basedir, f"{vgf_name}_{model_id}.pkl")
|
||||
with open(_path, "wb") as f:
|
||||
pickle.dump(self, f)
|
||||
return self
|
||||
|
||||
def __str__(self):
|
||||
str = f"[Transformer VGF (t)]\n- model_name: {self.model_name}\n- max_length: {self.max_length}\n- batch_size: {self.batch_size}\n- batch_size_eval: {self.batch_size_eval}\n- lr: {self.lr}\n- epochs: {self.epochs}\n- device: {self.device}\n- print_steps: {self.print_steps}\n- evaluate_step: {self.evaluate_step}\n- patience: {self.patience}\n- probabilistic: {self.probabilistic}\n"
|
||||
return str
|
||||
|
||||
|
||||
class MultilingualDatasetTorch(Dataset):
|
||||
def __init__(self, lX, lY, split="train"):
|
||||
self.lX = lX
|
||||
self.lY = lY
|
||||
self.split = split
|
||||
self.langs = []
|
||||
self.init()
|
||||
|
||||
def init(self):
|
||||
self.X = torch.vstack([data.input_ids for data in self.lX.values()])
|
||||
if self.split != "whole":
|
||||
self.Y = torch.vstack([torch.Tensor(data) for data in self.lY.values()])
|
||||
self.langs = sum(
|
||||
[
|
||||
v
|
||||
for v in {
|
||||
lang: [lang] * len(data.input_ids) for lang, data in self.lX.items()
|
||||
}.values()
|
||||
],
|
||||
[],
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
def __len__(self):
|
||||
return len(self.X)
|
||||
|
||||
def __getitem__(self, index):
|
||||
if self.split == "whole":
|
||||
return self.X[index], self.langs[index]
|
||||
return self.X[index], self.Y[index], self.langs[index]
|
||||
|
||||
|
||||
class Trainer:
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
optimizer_name,
|
||||
device,
|
||||
loss_fn,
|
||||
lr,
|
||||
print_steps,
|
||||
evaluate_step,
|
||||
patience,
|
||||
experiment_name,
|
||||
):
|
||||
self.device = device
|
||||
self.model = model.to(device)
|
||||
self.optimizer = self.init_optimizer(optimizer_name, lr)
|
||||
self.evaluate_steps = evaluate_step
|
||||
self.loss_fn = loss_fn.to(device)
|
||||
self.print_steps = print_steps
|
||||
self.earlystopping = EarlyStopping(
|
||||
patience=patience,
|
||||
checkpoint_path="models/vgfs/transformers/",
|
||||
verbose=True,
|
||||
experiment_name=experiment_name,
|
||||
)
|
||||
|
||||
def init_optimizer(self, optimizer_name, lr):
|
||||
if optimizer_name.lower() == "adamw":
|
||||
return AdamW(self.model.parameters(), lr=lr)
|
||||
else:
|
||||
raise ValueError(f"Optimizer {optimizer_name} not supported")
|
||||
|
||||
def train(self, train_dataloader, eval_dataloader, epochs=10):
|
||||
print(
|
||||
f"""- Training params:
|
||||
- epochs: {epochs}
|
||||
- learning rate: {self.optimizer.defaults['lr']}
|
||||
- train batch size: {train_dataloader.batch_size}
|
||||
- eval batch size: {eval_dataloader.batch_size}
|
||||
- max len: {train_dataloader.dataset.X.shape[-1]}\n""",
|
||||
)
|
||||
for epoch in range(epochs):
|
||||
self.train_epoch(train_dataloader, epoch)
|
||||
if (epoch + 1) % self.evaluate_steps == 0:
|
||||
metric_watcher = self.evaluate(eval_dataloader)
|
||||
stop = self.earlystopping(metric_watcher, self.model, epoch + 1)
|
||||
if stop:
|
||||
break
|
||||
return self.model
|
||||
|
||||
def train_epoch(self, dataloader, epoch):
|
||||
self.model.train()
|
||||
for b_idx, (x, y, lang) in enumerate(dataloader):
|
||||
self.optimizer.zero_grad()
|
||||
y_hat = self.model(x.to(self.device))
|
||||
loss = self.loss_fn(y_hat.logits, y.to(self.device))
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
if b_idx % self.print_steps == 0:
|
||||
print(f"Epoch: {epoch+1} Step: {b_idx+1} Loss: {loss:.4f}")
|
||||
return self
|
||||
|
||||
def evaluate(self, dataloader):
|
||||
self.model.eval()
|
||||
|
||||
lY = defaultdict(list)
|
||||
lY_hat = defaultdict(list)
|
||||
|
||||
for b_idx, (x, y, lang) in enumerate(dataloader):
|
||||
y_hat = self.model(x.to(self.device))
|
||||
loss = self.loss_fn(y_hat.logits, y.to(self.device))
|
||||
predictions = predict(y_hat.logits, classification_type="multilabel")
|
||||
|
||||
for l, _true, _pred in zip(lang, y, predictions):
|
||||
lY[l].append(_true.detach().cpu().numpy())
|
||||
lY_hat[l].append(_pred)
|
||||
|
||||
for lang in lY:
|
||||
lY[lang] = np.vstack(lY[lang])
|
||||
lY_hat[lang] = np.vstack(lY_hat[lang])
|
||||
|
||||
l_eval = evaluate(lY, lY_hat)
|
||||
average_metrics = log_eval(l_eval, phase="validation")
|
||||
return average_metrics[0] # macro-F1
|
||||
|
||||
|
||||
class EarlyStopping:
|
||||
def __init__(
|
||||
self,
|
||||
patience=5,
|
||||
min_delta=0,
|
||||
verbose=True,
|
||||
checkpoint_path="checkpoint.pt",
|
||||
experiment_name="experiment",
|
||||
):
|
||||
self.patience = patience
|
||||
self.min_delta = min_delta
|
||||
self.counter = 0
|
||||
self.best_score = 0
|
||||
self.best_epoch = None
|
||||
self.verbose = verbose
|
||||
self.checkpoint_path = checkpoint_path
|
||||
self.experiment_name = experiment_name
|
||||
|
||||
def __call__(self, validation, model, epoch):
|
||||
if validation > self.best_score:
|
||||
print(
|
||||
f"- earlystopping: Validation score improved from {self.best_score:.3f} to {validation:.3f}"
|
||||
)
|
||||
self.best_score = validation
|
||||
self.counter = 0
|
||||
# self.save_model(model)
|
||||
elif validation < (self.best_score + self.min_delta):
|
||||
self.counter += 1
|
||||
print(
|
||||
f"- earlystopping: Validation score decreased from {self.best_score:.3f} to {validation:.3f}, current patience: {self.patience - self.counter}"
|
||||
)
|
||||
if self.counter >= self.patience:
|
||||
if self.verbose:
|
||||
print(f"- earlystopping: Early stopping at epoch {epoch}")
|
||||
return True
|
||||
|
||||
def save_model(self, model):
|
||||
_checkpoint_dir = os.path.join(self.checkpoint_path, self.experiment_name)
|
||||
print(f"- saving model to {_checkpoint_dir}")
|
||||
os.makedirs(_checkpoint_dir, exist_ok=True)
|
||||
model.save_pretrained(_checkpoint_dir)
|
||||
|
||||
|
||||
def predict(logits, classification_type="multilabel"):
|
||||
"""
|
||||
Converts soft precictions to hard predictions [0,1]
|
||||
"""
|
||||
if classification_type == "multilabel":
|
||||
prediction = torch.sigmoid(logits) > 0.5
|
||||
elif classification_type == "singlelabel":
|
||||
prediction = torch.argmax(logits, dim=1).view(-1, 1)
|
||||
else:
|
||||
print("unknown classification type")
|
||||
|
||||
return prediction.detach().cpu().numpy()
|
|
@ -1,95 +1,30 @@
|
|||
import os
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import transformers
|
||||
from sklearn.model_selection import train_test_split
|
||||
from torch.optim import AdamW
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
||||
from vgfs.learners.svms import FeatureSet2Posteriors
|
||||
|
||||
from evaluation.evaluate import evaluate, log_eval
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
|
||||
# TODO: add support to loggers
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
|
||||
|
||||
class TransformerGen:
|
||||
def __init__(
|
||||
self,
|
||||
model_name,
|
||||
epochs=10,
|
||||
lr=1e-5,
|
||||
batch_size=4,
|
||||
batch_size_eval=32,
|
||||
max_length=512,
|
||||
print_steps=50,
|
||||
device="cpu",
|
||||
probabilistic=False,
|
||||
n_jobs=-1,
|
||||
evaluate_step=10,
|
||||
verbose=False,
|
||||
patience=5,
|
||||
):
|
||||
self.model_name = model_name
|
||||
self.device = device
|
||||
self.model = None
|
||||
self.lr = lr
|
||||
self.epochs = epochs
|
||||
self.tokenizer = None
|
||||
self.max_length = max_length
|
||||
self.batch_size = batch_size
|
||||
self.batch_size_eval = batch_size_eval
|
||||
self.print_steps = print_steps
|
||||
self.probabilistic = probabilistic
|
||||
self.n_jobs = n_jobs
|
||||
self.fitted = False
|
||||
"""Base class for all transformers. It implements the basic methods for
|
||||
the creation of the datasets, datalaoders and the train-val split method.
|
||||
It is designed to be used with MultilingualDataset in the
|
||||
form of dictioanries {lang: data}
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.datasets = {}
|
||||
self.evaluate_step = evaluate_step
|
||||
self.verbose = verbose
|
||||
self.patience = patience
|
||||
self._init()
|
||||
|
||||
def _init(self):
|
||||
if self.probabilistic:
|
||||
self.feature2posterior_projector = FeatureSet2Posteriors(
|
||||
n_jobs=self.n_jobs, verbose=False
|
||||
)
|
||||
self.model_name = self._get_model_name(self.model_name)
|
||||
print(
|
||||
f"- init TransformerModel model_name: {self.model_name}, device: {self.device}]"
|
||||
)
|
||||
|
||||
def _get_model_name(self, name):
|
||||
if "bert" == name:
|
||||
name_model = "bert-base-uncased"
|
||||
elif "mbert" == name:
|
||||
name_model = "bert-base-multilingual-uncased"
|
||||
elif "xlm" == name:
|
||||
name_model = "xlm-roberta-base"
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return name_model
|
||||
|
||||
def load_pretrained_model(self, model_name, num_labels):
|
||||
return AutoModelForSequenceClassification.from_pretrained(
|
||||
model_name, num_labels=num_labels, output_hidden_states=True
|
||||
)
|
||||
|
||||
def load_tokenizer(self, model_name):
|
||||
return AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
def init_model(self, model_name, num_labels):
|
||||
return self.load_pretrained_model(model_name, num_labels), self.load_tokenizer(
|
||||
model_name
|
||||
)
|
||||
def build_dataloader(
|
||||
self,
|
||||
lX,
|
||||
lY,
|
||||
torchDataset,
|
||||
processor_fn,
|
||||
batch_size,
|
||||
split="train",
|
||||
shuffle=False,
|
||||
):
|
||||
l_tokenized = {lang: processor_fn(data) for lang, data in lX.items()}
|
||||
self.datasets[split] = torchDataset(l_tokenized, lY, split=split)
|
||||
return DataLoader(self.datasets[split], batch_size=batch_size, shuffle=shuffle)
|
||||
|
||||
def get_train_val_data(self, lX, lY, split=0.2, seed=42):
|
||||
tr_lX, tr_lY, val_lX, val_lY = {}, {}, {}, {}
|
||||
|
@ -104,285 +39,3 @@ class TransformerGen:
|
|||
val_lY[lang] = val_Y
|
||||
|
||||
return tr_lX, tr_lY, val_lX, val_lY
|
||||
|
||||
def build_dataloader(self, lX, lY, batch_size, split="train", shuffle=True):
|
||||
l_tokenized = {lang: self._tokenize(data) for lang, data in lX.items()}
|
||||
self.datasets[split] = MultilingualDatasetTorch(l_tokenized, lY, split=split)
|
||||
return DataLoader(self.datasets[split], batch_size=batch_size, shuffle=shuffle)
|
||||
|
||||
def _tokenize(self, X):
|
||||
return self.tokenizer(
|
||||
X,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=self.max_length,
|
||||
)
|
||||
|
||||
def fit(self, lX, lY):
|
||||
if self.fitted:
|
||||
return self
|
||||
print("- fitting Transformer View Generating Function")
|
||||
_l = list(lX.keys())[0]
|
||||
self.num_labels = lY[_l].shape[-1]
|
||||
self.model, self.tokenizer = self.init_model(
|
||||
self.model_name, num_labels=self.num_labels
|
||||
)
|
||||
|
||||
tr_lX, tr_lY, val_lX, val_lY = self.get_train_val_data(
|
||||
lX, lY, split=0.2, seed=42
|
||||
)
|
||||
|
||||
tra_dataloader = self.build_dataloader(
|
||||
tr_lX, tr_lY, self.batch_size, split="train", shuffle=True
|
||||
)
|
||||
|
||||
val_dataloader = self.build_dataloader(
|
||||
val_lX, val_lY, self.batch_size_eval, split="val", shuffle=False
|
||||
)
|
||||
|
||||
experiment_name = f"{self.model_name}-{self.epochs}-{self.batch_size}"
|
||||
trainer = Trainer(
|
||||
model=self.model,
|
||||
optimizer_name="adamW",
|
||||
lr=self.lr,
|
||||
device=self.device,
|
||||
loss_fn=torch.nn.CrossEntropyLoss(),
|
||||
print_steps=self.print_steps,
|
||||
evaluate_step=self.evaluate_step,
|
||||
patience=self.patience,
|
||||
experiment_name=experiment_name,
|
||||
)
|
||||
trainer.train(
|
||||
train_dataloader=tra_dataloader,
|
||||
eval_dataloader=val_dataloader,
|
||||
epochs=self.epochs,
|
||||
)
|
||||
|
||||
if self.probabilistic:
|
||||
self.feature2posterior_projector.fit(self.transform(lX), lY)
|
||||
|
||||
self.fitted = True
|
||||
|
||||
return self
|
||||
|
||||
def transform(self, lX):
|
||||
_embeds = []
|
||||
l_embeds = defaultdict(list)
|
||||
|
||||
dataloader = self.build_dataloader(
|
||||
lX, lY=None, batch_size=self.batch_size_eval, split="whole", shuffle=False
|
||||
)
|
||||
|
||||
self.model.eval()
|
||||
with torch.no_grad():
|
||||
for input_ids, lang in dataloader:
|
||||
input_ids = input_ids.to(self.device)
|
||||
out = self.model(input_ids).hidden_states[-1]
|
||||
batch_embeddings = out[:, 0, :].cpu().numpy()
|
||||
_embeds.append((batch_embeddings, lang))
|
||||
|
||||
for embed, lang in _embeds:
|
||||
for sample_embed, sample_lang in zip(embed, lang):
|
||||
l_embeds[sample_lang].append(sample_embed)
|
||||
|
||||
if self.probabilistic and self.fitted:
|
||||
l_embeds = self.feature2posterior_projector.transform(l_embeds)
|
||||
|
||||
return l_embeds
|
||||
|
||||
def fit_transform(self, lX, lY):
|
||||
return self.fit(lX, lY).transform(lX)
|
||||
|
||||
def save_vgf(self, model_id):
|
||||
import pickle
|
||||
from os.path import join
|
||||
from os import makedirs
|
||||
|
||||
vgf_name = "transformerGen"
|
||||
_basedir = join("models", "vgfs", "transformer")
|
||||
makedirs(_basedir, exist_ok=True)
|
||||
_path = join(_basedir, f"{vgf_name}_{model_id}.pkl")
|
||||
with open(_path, "wb") as f:
|
||||
pickle.dump(self, f)
|
||||
return self
|
||||
|
||||
def __str__(self):
|
||||
str = f"[Transformer VGF (t)]\n- model_name: {self.model_name}\n- max_length: {self.max_length}\n- batch_size: {self.batch_size}\n- batch_size_eval: {self.batch_size_eval}\n- lr: {self.lr}\n- epochs: {self.epochs}\n- device: {self.device}\n- print_steps: {self.print_steps}\n- evaluate_step: {self.evaluate_step}\n- patience: {self.patience}\n- probabilistic: {self.probabilistic}\n"
|
||||
return str
|
||||
|
||||
|
||||
class MultilingualDatasetTorch(Dataset):
|
||||
def __init__(self, lX, lY, split="train"):
|
||||
self.lX = lX
|
||||
self.lY = lY
|
||||
self.split = split
|
||||
self.langs = []
|
||||
self.init()
|
||||
|
||||
def init(self):
|
||||
self.X = torch.vstack([data.input_ids for data in self.lX.values()])
|
||||
if self.split != "whole":
|
||||
self.Y = torch.vstack([torch.Tensor(data) for data in self.lY.values()])
|
||||
self.langs = sum(
|
||||
[
|
||||
v
|
||||
for v in {
|
||||
lang: [lang] * len(data.input_ids) for lang, data in self.lX.items()
|
||||
}.values()
|
||||
],
|
||||
[],
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
def __len__(self):
|
||||
return len(self.X)
|
||||
|
||||
def __getitem__(self, index):
|
||||
if self.split == "whole":
|
||||
return self.X[index], self.langs[index]
|
||||
return self.X[index], self.Y[index], self.langs[index]
|
||||
|
||||
|
||||
class Trainer:
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
optimizer_name,
|
||||
device,
|
||||
loss_fn,
|
||||
lr,
|
||||
print_steps,
|
||||
evaluate_step,
|
||||
patience,
|
||||
experiment_name,
|
||||
):
|
||||
self.device = device
|
||||
self.model = model.to(device)
|
||||
self.optimizer = self.init_optimizer(optimizer_name, lr)
|
||||
self.evaluate_steps = evaluate_step
|
||||
self.loss_fn = loss_fn.to(device)
|
||||
self.print_steps = print_steps
|
||||
self.earlystopping = EarlyStopping(
|
||||
patience=patience,
|
||||
checkpoint_path="models/vgfs/transformers/",
|
||||
verbose=True,
|
||||
experiment_name=experiment_name,
|
||||
)
|
||||
|
||||
def init_optimizer(self, optimizer_name, lr):
|
||||
if optimizer_name.lower() == "adamw":
|
||||
return AdamW(self.model.parameters(), lr=lr)
|
||||
else:
|
||||
raise ValueError(f"Optimizer {optimizer_name} not supported")
|
||||
|
||||
def train(self, train_dataloader, eval_dataloader, epochs=10):
|
||||
print(
|
||||
f"""- Training params:
|
||||
- epochs: {epochs}
|
||||
- learning rate: {self.optimizer.defaults['lr']}
|
||||
- train batch size: {train_dataloader.batch_size}
|
||||
- eval batch size: {eval_dataloader.batch_size}
|
||||
- max len: {train_dataloader.dataset.X.shape[-1]}\n""",
|
||||
)
|
||||
for epoch in range(epochs):
|
||||
self.train_epoch(train_dataloader, epoch)
|
||||
if (epoch + 1) % self.evaluate_steps == 0:
|
||||
metric_watcher = self.evaluate(eval_dataloader)
|
||||
stop = self.earlystopping(metric_watcher, self.model, epoch + 1)
|
||||
if stop:
|
||||
break
|
||||
return self.model
|
||||
|
||||
def train_epoch(self, dataloader, epoch):
|
||||
self.model.train()
|
||||
for b_idx, (x, y, lang) in enumerate(dataloader):
|
||||
self.optimizer.zero_grad()
|
||||
y_hat = self.model(x.to(self.device))
|
||||
loss = self.loss_fn(y_hat.logits, y.to(self.device))
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
if b_idx % self.print_steps == 0:
|
||||
print(f"Epoch: {epoch+1} Step: {b_idx+1} Loss: {loss:.4f}")
|
||||
return self
|
||||
|
||||
def evaluate(self, dataloader):
|
||||
self.model.eval()
|
||||
|
||||
lY = defaultdict(list)
|
||||
lY_hat = defaultdict(list)
|
||||
|
||||
for b_idx, (x, y, lang) in enumerate(dataloader):
|
||||
y_hat = self.model(x.to(self.device))
|
||||
loss = self.loss_fn(y_hat.logits, y.to(self.device))
|
||||
predictions = predict(y_hat.logits, classification_type="multilabel")
|
||||
|
||||
for l, _true, _pred in zip(lang, y, predictions):
|
||||
lY[l].append(_true.detach().cpu().numpy())
|
||||
lY_hat[l].append(_pred)
|
||||
|
||||
for lang in lY:
|
||||
lY[lang] = np.vstack(lY[lang])
|
||||
lY_hat[lang] = np.vstack(lY_hat[lang])
|
||||
|
||||
l_eval = evaluate(lY, lY_hat)
|
||||
average_metrics = log_eval(l_eval, phase="validation")
|
||||
return average_metrics[0] # macro-F1
|
||||
|
||||
|
||||
class EarlyStopping:
|
||||
def __init__(
|
||||
self,
|
||||
patience=5,
|
||||
min_delta=0,
|
||||
verbose=True,
|
||||
checkpoint_path="checkpoint.pt",
|
||||
experiment_name="experiment",
|
||||
):
|
||||
self.patience = patience
|
||||
self.min_delta = min_delta
|
||||
self.counter = 0
|
||||
self.best_score = 0
|
||||
self.best_epoch = None
|
||||
self.verbose = verbose
|
||||
self.checkpoint_path = checkpoint_path
|
||||
self.experiment_name = experiment_name
|
||||
|
||||
def __call__(self, validation, model, epoch):
|
||||
if validation > self.best_score:
|
||||
print(
|
||||
f"- earlystopping: Validation score improved from {self.best_score:.3f} to {validation:.3f}"
|
||||
)
|
||||
self.best_score = validation
|
||||
self.counter = 0
|
||||
# self.save_model(model)
|
||||
elif validation < (self.best_score + self.min_delta):
|
||||
self.counter += 1
|
||||
print(
|
||||
f"- earlystopping: Validation score decreased from {self.best_score:.3f} to {validation:.3f}, current patience: {self.patience - self.counter}"
|
||||
)
|
||||
if self.counter >= self.patience:
|
||||
if self.verbose:
|
||||
print(f"- earlystopping: Early stopping at epoch {epoch}")
|
||||
return True
|
||||
|
||||
def save_model(self, model):
|
||||
_checkpoint_dir = os.path.join(self.checkpoint_path, self.experiment_name)
|
||||
print(f"- saving model to {_checkpoint_dir}")
|
||||
os.makedirs(_checkpoint_dir, exist_ok=True)
|
||||
model.save_pretrained(_checkpoint_dir)
|
||||
|
||||
|
||||
def predict(logits, classification_type="multilabel"):
|
||||
"""
|
||||
Converts soft precictions to hard predictions [0,1]
|
||||
"""
|
||||
if classification_type == "multilabel":
|
||||
prediction = torch.sigmoid(logits) > 0.5
|
||||
elif classification_type == "singlelabel":
|
||||
prediction = torch.argmax(logits, dim=1).view(-1, 1)
|
||||
else:
|
||||
print("unknown classification type")
|
||||
|
||||
return prediction.detach().cpu().numpy()
|
||||
|
|
|
@ -1,18 +0,0 @@
|
|||
from vgfs.viewGen import ViewGen
|
||||
|
||||
|
||||
class VisualGen(ViewGen):
|
||||
def fit():
|
||||
raise NotImplemented
|
||||
|
||||
def transform(self, lX):
|
||||
return super().transform(lX)
|
||||
|
||||
def fit_transform(self, lX, lY):
|
||||
return super().fit_transform(lX, lY)
|
||||
|
||||
def save_vgf(self, model_id):
|
||||
return super().save_vgf(model_id)
|
||||
|
||||
def save_vgf(self, model_id):
|
||||
return super().save_vgf(model_id)
|
|
@ -0,0 +1,175 @@
|
|||
import sys, os
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
import torch
|
||||
import transformers
|
||||
from gfun.vgfs.viewGen import ViewGen
|
||||
from transformers import AutoImageProcessor
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor
|
||||
from gfun.vgfs.commons import Trainer, predict
|
||||
from gfun.vgfs.transformerGen import TransformerGen
|
||||
from transformers import AutoModelForImageClassification, TrainingArguments, Trainer
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
|
||||
class VisualTransformerGen(ViewGen, TransformerGen):
|
||||
def __init__(
|
||||
self, model_name, lr=1e-5, epochs=10, batch_size=32, batch_size_eval=128
|
||||
):
|
||||
self.model_name = model_name
|
||||
self.datasets = {}
|
||||
self.lr = lr
|
||||
self.epochs = epochs
|
||||
self.batch_size = batch_size
|
||||
self.batch_size_eval = batch_size_eval
|
||||
|
||||
def _validate_model_name(self, model_name):
|
||||
if "vit" == model_name:
|
||||
return "google/vit-base-patch16-224-in21k"
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
def init_model(self, model_name, num_labels):
|
||||
model = (
|
||||
AutoModelForImageClassification.from_pretrained(
|
||||
model_name, num_labels=num_labels
|
||||
),
|
||||
)
|
||||
image_processor = AutoImageProcessor.from_pretrained(model_name)
|
||||
transforms = self.init_preprocessor(image_processor)
|
||||
return model, image_processor, transforms
|
||||
|
||||
def init_preprocessor(self, image_processor):
|
||||
normalize = Normalize(
|
||||
mean=image_processor.image_mean, std=image_processor.image_std
|
||||
)
|
||||
size = (
|
||||
image_processor.size["shortest_edge"]
|
||||
if "shortest_edge" in image_processor.size
|
||||
else (image_processor.size["height"], image_processor.size["width"])
|
||||
)
|
||||
# these are the transformations that we are applying to the images
|
||||
transforms = Compose([RandomResizedCrop(size), ToTensor(), normalize])
|
||||
return transforms
|
||||
|
||||
def preprocess(self, images, transforms):
|
||||
processed = transforms(img.convert("RGB") for img in images)
|
||||
return processed
|
||||
|
||||
def process_all(self, X):
|
||||
# TODO: every element in X is a tuple (doc_id, clean_text, text, Pil.Image), so we're taking just the last element for processing
|
||||
processed = torch.stack([self.transforms(img[-1]) for img in X])
|
||||
return processed
|
||||
|
||||
def fit(self, lX, lY):
|
||||
print("- fitting Visual Transformer View Generating Function")
|
||||
_l = list(lX.keys())[0]
|
||||
self.num_labels = lY[_l].shape[-1]
|
||||
self.model, self.image_preprocessor, self.transforms = self.init_model(
|
||||
self._validate_model_name(self.model_name), num_labels=self.num_labels
|
||||
)
|
||||
|
||||
tr_lX, tr_lY, val_lX, val_lY = self.get_train_val_data(
|
||||
lX, lY, split=0.2, seed=42
|
||||
)
|
||||
|
||||
tra_dataloader = self.build_dataloader(
|
||||
tr_lX,
|
||||
tr_lY,
|
||||
processor_fn=self.process_all,
|
||||
torchDataset=MultimodalDatasetTorch,
|
||||
batch_size=self.batch_size,
|
||||
split="train",
|
||||
shuffle=True,
|
||||
)
|
||||
|
||||
val_dataloader = self.build_dataloader(
|
||||
val_lX,
|
||||
val_lY,
|
||||
processor_fn=self.process_all,
|
||||
torchDataset=MultimodalDatasetTorch,
|
||||
batch_size=self.batch_size_eval,
|
||||
split="val",
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
experiment_name = f"{self.model_name}-{self.epochs}-{self.batch_size}"
|
||||
trainer = Trainer(
|
||||
model=self.model,
|
||||
optimizer_name="adamW",
|
||||
lr=self.lr,
|
||||
device=self.device,
|
||||
loss_fn=torch.nn.CrossEntropyLoss(),
|
||||
print_steps=self.print_steps,
|
||||
evaluate_step=self.evaluate_step,
|
||||
patience=self.patience,
|
||||
experiment_name=experiment_name,
|
||||
)
|
||||
|
||||
trainer.train(
|
||||
train_dataloader=tra_dataloader,
|
||||
val_dataloader=val_dataloader,
|
||||
epochs=self.epochs,
|
||||
)
|
||||
|
||||
def transform(self, lX):
|
||||
raise NotImplementedError
|
||||
|
||||
def fit_transform(self, lX, lY):
|
||||
raise NotImplementedError
|
||||
|
||||
def save_vgf(self, model_id):
|
||||
raise NotImplementedError
|
||||
|
||||
def save_vgf(self, model_id):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class MultimodalDatasetTorch(Dataset):
|
||||
def __init__(self, lX, lY, split="train"):
|
||||
self.lX = lX
|
||||
self.lY = lY
|
||||
self.split = split
|
||||
self.langs = []
|
||||
self.init()
|
||||
|
||||
def init(self):
|
||||
self.X = torch.vstack([imgs for imgs in self.lX.values()])
|
||||
if self.split != "whole":
|
||||
self.Y = torch.vstack([torch.Tensor(data) for data in self.lY.values()])
|
||||
self.langs = sum(
|
||||
[
|
||||
v
|
||||
for v in {
|
||||
lang: [lang] * len(data) for lang, data in self.lX.items()
|
||||
}.values()
|
||||
],
|
||||
[],
|
||||
)
|
||||
print(f"- lX has shape: {self.X.shape}\n- lY has shape: {self.Y.shape}")
|
||||
|
||||
def __len__(self):
|
||||
return len(self.X)
|
||||
|
||||
def __getitem__(self, index):
|
||||
if self.split == "whole":
|
||||
return self.X[index], self.langs[index]
|
||||
return self.X[index], self.Y[index], self.langs[index]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from os.path import expanduser
|
||||
from dataManager.multiNewsDataset import MultiNewsDataset
|
||||
|
||||
_dataset_path_hardcoded = "~/datasets/MultiNews/20110730/"
|
||||
|
||||
dataset = MultiNewsDataset(expanduser(_dataset_path_hardcoded), debug=True)
|
||||
lXtr, lYtr = dataset.training()
|
||||
|
||||
vg = VisualTransformerGen(model_name="vit")
|
||||
lX, lY = dataset.training()
|
||||
vg.fit(lX, lY)
|
||||
print("lel")
|
Loading…
Reference in New Issue