1
0
Fork 0
Commit Graph

33 Commits

Author SHA1 Message Date
Alejandro Moreo Fernandez 40cb8f78fe pytests before release 2024-02-14 12:27:19 +01:00
Alejandro Moreo Fernandez 49fc486c53 preparing to merge 2023-02-14 17:00:50 +01:00
Alejandro Moreo Fernandez 25a829996e evaluation updated 2023-02-14 11:14:38 +01:00
Alejandro Moreo Fernandez c608647475 some bug fixes here and there 2023-02-13 19:27:48 +01:00
Alejandro Moreo Fernandez f2550fdb82 full example of training, model selection, and evaluation using the lequa2022 dataset with the new protocols 2022-11-04 15:04:36 +01:00
Alejandro Moreo Fernandez 45642ad778 lequa as dataset 2022-06-01 18:28:59 +02:00
Alejandro Moreo Fernandez eba6fd8123 optimization conditional in the prediction function 2022-05-26 17:59:23 +02:00
Alejandro Moreo Fernandez 4bc9d19635 many changes, see change log 2022-05-25 19:14:33 +02:00
Alejandro Moreo Fernandez 46e3632200 ongoing protocols 2022-05-23 00:20:08 +02:00
Alejandro Moreo Fernandez 5deb92b457 update doc 2021-12-07 17:16:39 +01:00
Alejandro Moreo Fernandez 8368c467dc adapting new format 2021-11-26 10:57:49 +01:00
Alejandro Moreo Fernandez 238a30520c adapting everything to the new format 2021-11-08 18:01:49 +01:00
Alejandro Moreo Fernandez a7e87e41f8 GridSearchQ adapted to work with generator functions and integrated for the baselines of LeQua2022; some tests with SVD 2021-10-26 18:41:10 +02:00
Alejandro Moreo Fernandez be2f54de9c renaming functions to match the app and npp nomenclature; adding npp as an option for GridSearchQ 2021-06-16 11:45:40 +02:00
Alejandro Moreo Fernandez be1fa757d6 cleaning 2021-05-27 16:56:09 +02:00
Alejandro Moreo Fernandez 731b54c5ba adding natural sampling protocol 2021-05-27 16:53:58 +02:00
Alejandro Moreo Fernandez a2ec72496a adding eval_budget to evaluation functions 2021-02-09 11:48:16 +01:00
Alejandro Moreo Fernandez 3aaf57f2f3 all uci datasets from Pérez-Gállego added, quantification report added 2021-01-28 18:22:43 +01:00
Alejandro Moreo Fernandez e609c262b4 parallel functionality added to quapy in order to allow for multiprocess parallelization (and not threading) handling quapy's environment variables 2021-01-27 09:54:41 +01:00
Alejandro Moreo Fernandez 03cf73aff6 refactor: methods requiring a val_split can now declare a default value in the __init__ method that will be used in case the fit method is called without specifying the val_split, which now is by default None in the fit, i.e., by default takes the value of the init, that is generally set to 0.4; some uci datasets added; ensembles can now be optimized for quantification, and can be trained on samples of smaller size 2021-01-22 18:01:51 +01:00
Alejandro Moreo Fernandez bf1cc74ba1 quapy fixed 2021-01-22 09:58:12 +01:00
Alejandro Moreo Fernandez 99132c8166 fixing quanet 2021-01-20 12:35:14 +01:00
Alejandro Moreo Fernandez 482e4453a8 refactor of ensembles, launching EPACC with Ptr policy 2021-01-19 18:26:40 +01:00
Alejandro Moreo Fernandez b30c40b7a0 some refactor made in order to accomodate OneVsAll to operate with aggregative probabilistic quantifiers; launching OneVsAll(HDy) 2021-01-18 16:52:19 +01:00
Alejandro Moreo Fernandez 5e64d2588a import fixes 2021-01-15 18:32:32 +01:00
Alejandro Moreo Fernandez 3c5a53bdec testing quapy via replicating Tweet Quantification experiments 2021-01-12 17:39:00 +01:00
Alejandro Moreo Fernandez 3e07feda3c import bug fixed 2021-01-12 09:35:49 +01:00
Alejandro Moreo Fernandez d1b449d2e9 plot functionality added 2021-01-07 17:58:48 +01:00
Alejandro Moreo Fernandez 326a8ab803 added Ensemble methods (methods ALL, ACC, Ptr, DS from Pérez-Gallego et al 2017 and 2019) and some UCI ML datasets used in those articles (only 5 datasets out of 32 they used) 2021-01-06 14:58:29 +01:00
Alejandro Moreo Fernandez 7bed93dcbf added model selection for quantification 2020-12-22 17:43:23 +01:00
Alejandro Moreo Fernandez 7d6f523e4b uniform sampling added if *prevs is empty 2020-12-17 18:17:17 +01:00
Alejandro Moreo Fernandez c8a1a70c8a refactoring aggregative methods as methods that not only implement 'classify' and 'quantify', but that also implement 'aggregate' and that, by default, have a default implementation of 'quantify' as a pipeline of 'classify' and 'aggregate'; this helps speeding up evaluations A LOT, since the documents can be pre-classified and the samples are carried out across pre-classified values (labels, or posterior probabilities), and thus only aggregate is called many times within the artificial sampling protocol 2020-12-11 19:28:17 +01:00
Alejandro Moreo Fernandez 9bc3a9f28a evaluation by artificial prevalence sampling added. New methods added. New util functions added to quapy.functional and quapy.utils 2020-12-10 19:04:33 +01:00