vcglib/vcg/complex/algorithms/harmonic.h

281 lines
10 KiB
C
Raw Normal View History

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_HARMONIC_FIELD
#define __VCGLIB_HARMONIC_FIELD
#include <vcg/complex/complex.h>
#include <Eigen/Sparse>
namespace vcg {
namespace tri {
template <class MeshType, typename Scalar = double>
class Harmonic
{
public:
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
typedef double CoeffScalar;
typedef typename std::pair<VertexType *, Scalar> Constraint;
typedef typename std::vector<Constraint> ConstraintVec;
typedef typename ConstraintVec::const_iterator ConstraintIt;
/**
* @brief ComputeScalarField
* Generates a scalar harmonic field over the mesh.
* For more details see:\n Kai Xua, Hao Zhang, Daniel Cohen-Or, Yueshan Xionga,'Dynamic Harmonic Fields for Surface Processing'.\nin Computers & Graphics, 2009
* @param m the mesh
* @param constraints the Dirichlet boundary conditions in the form of vector of pairs <vertex pointer, value>.
* @param field the accessor to use to write the computed per-vertex values (must have the [ ] operator).
* @return true if the algorithm succeeds, false otherwise.
* @note the algorithm has unexpected behavior if the mesh contains unreferenced vertices.
*/
template <typename ACCESSOR>
static bool ComputeScalarField(MeshType & m, const ConstraintVec & constraints, ACCESSOR field, bool biharmonic = false)
{
typedef Eigen::SparseMatrix<CoeffScalar> SpMat; // sparse matrix type
typedef Eigen::Triplet<CoeffScalar> Triple; // triplet type to fill the matrix
RequirePerVertexFlags(m);
RequireCompactness(m);
RequireFFAdjacency(m);
MeshAssert<MeshType>::FFAdjacencyIsInitialized(m);
MeshAssert<MeshType>::NoUnreferencedVertex(m);
if (constraints.empty())
return false;
int n = m.VN();
// Generate coefficients
std::vector<Triple> coeffs; // coefficients of the system
std::map<size_t,CoeffScalar> sums; // row sum of the coefficient matrix
vcg::tri::UpdateFlags<MeshType>::FaceClearV(m);
for (size_t i = 0; i < m.face.size(); ++i)
{
FaceType & f = m.face[i];
assert(!f.IsV());
f.SetV();
// Generate coefficients for each edge
for (int edge = 0; edge < 3; ++edge)
{
CoeffScalar weight;
WeightInfo res = CotangentWeightIfNotVisited(f, edge, weight);
if (res == EdgeAlreadyVisited) continue;
assert(res == Success);
// Add the weight to the coefficients vector for both the vertices of the considered edge
size_t v0_idx = vcg::tri::Index(m, f.V0(edge));
size_t v1_idx = vcg::tri::Index(m, f.V1(edge));
coeffs.push_back(Triple(v0_idx, v1_idx, -weight));
coeffs.push_back(Triple(v1_idx, v0_idx, -weight));
// Add the weight to the row sum
sums[v0_idx] += weight;
sums[v1_idx] += weight;
}
}
// Setup the system matrix
SpMat laplaceMat; // the system to be solved
laplaceMat.resize(n, n); // eigen initializes it to zero
laplaceMat.reserve(coeffs.size());
for (std::map<size_t,CoeffScalar>::const_iterator it = sums.begin(); it != sums.end(); ++it)
{
coeffs.push_back(Triple(it->first, it->first, it->second));
}
laplaceMat.setFromTriplets(coeffs.begin(), coeffs.end());
if (biharmonic)
{
SpMat lap_t = laplaceMat;
lap_t.transpose();
laplaceMat = lap_t * laplaceMat;
}
// Setting the constraints
const CoeffScalar alpha = pow(10.0, 8.0); // penalty factor alpha
// const CoeffScalar alpha = CoeffScalar(1e5); // penalty factor alpha
Eigen::Matrix<CoeffScalar, Eigen::Dynamic, 1> b, x; // Unknown and known terms vectors
b.setZero(n);
for (ConstraintIt it=constraints.begin(); it!=constraints.end(); it++)
{
size_t v_idx = vcg::tri::Index(m, it->first);
b(v_idx) = alpha * it->second;
laplaceMat.coeffRef(v_idx, v_idx) += alpha;
}
// Perform matrix decomposition
Eigen::SimplicialLDLT<SpMat> solver;
solver.compute(laplaceMat);
// TODO eventually use another solver (e.g. CHOLMOD for dynamic setups)
if(solver.info() != Eigen::Success)
{
// decomposition failed
switch (solver.info())
{
// possible errors
case Eigen::NumericalIssue :
case Eigen::NoConvergence :
case Eigen::InvalidInput :
default : return false;
}
}
// Solve the system: laplacianMat x = b
x = solver.solve(b);
if(solver.info() != Eigen::Success)
{
return false;
}
// Set field value using the provided handle
for (size_t i = 0; int(i) < n; ++i)
{
field[i] = Scalar(x[i]);
}
return true;
}
enum WeightInfo
{
Success = 0,
EdgeAlreadyVisited
};
/**
* @brief CotangentWeightIfNotVisited computes the cotangent weighting for an edge
* (if it has not be done yet).
* This must be ensured setting the visited flag on the face once all edge weights have been computed.
* @param f the face
* @param edge the edge of the provided face for which we compute the weight
* @param weight the computed weight (output)
* @return Success if everything is fine, EdgeAlreadyVisited if the weight
* for the considered edge has been already computed.
* @note the mesh must have the face-face topology updated
*/
template <typename ScalarT>
static WeightInfo CotangentWeightIfNotVisited(const FaceType &f, int edge, ScalarT & weight)
{
const FaceType * fp = f.cFFp(edge);
if (fp != NULL && fp != &f)
{
// not a border edge
if (fp->IsV()) return EdgeAlreadyVisited;
}
weight = CotangentWeight<ScalarT>(f, edge);
return Success;
}
/**
* @brief ComputeWeight computes the cotangent weighting for an edge
* @param f the face
* @param edge the edge of the provided face for which we compute the weight
* @return the computed weight
* @note the mesh must have the face-face topology updated
*/
template <typename ScalarT>
static ScalarT CotangentWeight(const FaceType &f, int edge)
{
assert(edge >= 0 && edge < 3);
// get the adjacent face
const FaceType * fp = f.cFFp(edge);
// v0
// /|\
// / | \
// / | \
// / | \
// va\ | /vb
// \ | /
// \ | /
// \|/
// v1
ScalarT cotA = 0;
ScalarT cotB = 0;
// Get the edge (a pair of vertices)
VertexType * v0 = f.cV(edge);
VertexType * v1 = f.cV((edge+1)%f.VN());
if (fp != NULL &&
fp != &f)
{
// not a border edge
VertexType * vb = fp->cV((f.cFFi(edge)+2)%fp->VN());
ScalarT angleB = ComputeAngle<ScalarT>(v0, vb, v1);
cotB = vcg::math::Cos(angleB) / vcg::math::Sin(angleB);
}
VertexType * va = f.cV((edge+2)%f.VN());
ScalarT angleA = ComputeAngle<ScalarT>(v0, va, v1);
cotA = vcg::math::Cos(angleA) / vcg::math::Sin(angleA);
return (cotA + cotB) / 2;
}
template <typename ScalarT>
static ScalarT ComputeAngle(const VertexType * a, const VertexType * b, const VertexType * c)
{
// a
// /
// /
// /
// / ___ compute the angle in b
// b \
// \
// \
// \
// c
assert(a != NULL && b != NULL && c != NULL);
Point3<ScalarT> A,B,C;
A.Import(a->P());
B.Import(b->P());
C.Import(c->P());
ScalarT angle = vcg::Angle(A - B, C - B);
return angle;
}
};
}
}
#endif // __VCGLIB_HARMONIC_FIELD