vcglib/vcg/simplex/face/topology.h

669 lines
17 KiB
C
Raw Normal View History

2004-03-10 01:50:41 +01:00
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef _VCG_FACE_TOPOLOGY
#define _VCG_FACE_TOPOLOGY
2008-12-29 13:01:23 +01:00
#include <vcg/simplex/face/pos.h>
2011-04-13 15:02:41 +02:00
#include <vector>
2008-12-29 13:01:23 +01:00
#include <algorithm>
2004-03-10 01:50:41 +01:00
namespace vcg {
namespace face {
/** \addtogroup face */
/*@{*/
2004-03-08 06:25:48 +01:00
/** Return a boolean that indicate if the face is complex.
@param j Index of the edge
@return true se la faccia e' manifold, false altrimenti
*/
2004-03-10 01:50:41 +01:00
template <class FaceType>
inline bool IsManifold( FaceType const & f, const int j )
2004-03-08 06:25:48 +01:00
{
assert(f.cFFp(j) != 0); // never try to use this on uncomputed topology
2004-03-10 01:50:41 +01:00
if(FaceType::HasFFAdjacency())
2005-11-10 16:49:32 +01:00
return ( f.cFFp(j) == &f || &f == f.cFFp(j)->cFFp(f.cFFi(j)) );
2004-03-10 01:50:41 +01:00
else
return true;
2004-03-08 06:25:48 +01:00
}
/** Return a boolean that indicate if the j-th edge of the face is a border.
@param j Index of the edge
@return true if j is an edge of border, false otherwise
*/
2004-03-10 01:50:41 +01:00
template <class FaceType>
inline bool IsBorder(FaceType const & f, const int j )
2004-03-08 06:25:48 +01:00
{
2004-03-10 01:50:41 +01:00
if(FaceType::HasFFAdjacency())
return f.cFFp(j)==&f;
//return f.IsBorder(j);
assert(0);
return true;
2004-03-08 06:25:48 +01:00
}
2004-03-18 17:00:10 +01:00
/// Count border edges of the face
2004-03-10 01:50:41 +01:00
template <class FaceType>
inline int BorderCount(FaceType const & f)
2004-03-08 06:25:48 +01:00
{
2004-03-10 01:50:41 +01:00
if(FaceType::HasFFAdjacency())
{
int t = 0;
if( IsBorder(f,0) ) ++t;
if( IsBorder(f,1) ) ++t;
if( IsBorder(f,2) ) ++t;
2004-03-10 01:50:41 +01:00
return t;
}
else return 3;
2004-03-08 06:25:48 +01:00
}
2004-03-18 17:00:10 +01:00
/// Counts the number of incident faces in a complex edge
2004-03-10 01:50:41 +01:00
template <class FaceType>
inline int ComplexSize(FaceType & f, const int e)
2004-03-10 01:50:41 +01:00
{
if(FaceType::HasFFAdjacency())
{
if(face::IsBorder<FaceType>(f,e)) return 1;
if(face::IsManifold<FaceType>(f,e)) return 2;
// Non manifold case
Pos< FaceType > fpos(&f,e);
int cnt=0;
do
{
fpos.NextF();
assert(!fpos.IsBorder());
assert(!fpos.IsManifold());
++cnt;
}
while(fpos.f!=&f);
assert (cnt>2);
return cnt;
}
2004-03-10 01:50:41 +01:00
assert(0);
2004-03-08 06:25:48 +01:00
return 2;
}
/** This function check the FF topology correctness for an edge of a face.
It's possible to use it also in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't defined.
@param f the face to be checked
@param e Index of the edge to be checked
2004-03-08 06:25:48 +01:00
*/
template <class FaceType>
bool FFCorrectness(FaceType & f, const int e)
{
if(f.FFp(e)==0) return false; // Not computed or inconsistent topology
if(f.FFp(e)==&f) // Border
{
if(f.FFi(e)==e) return true;
else return false;
}
if(f.FFp(e)->FFp(f.FFi(e))==&f) // plain two manifold
{
if(f.FFp(e)->FFi(f.FFi(e))==e) return true;
else return false;
}
// Non Manifold Case
// all the faces must be connected in a loop.
Pos< FaceType > curFace(&f,e); // Build the half edge
int cnt=0;
do
{
if(curFace.IsManifold()) return false;
if(curFace.IsBorder()) return false;
curFace.NextF();
cnt++;
assert(cnt<100);
}
while ( curFace.f != &f);
return true;
}
/** This function detach the face from the adjacent face via the edge e.
It's possible to use this function it ONLY in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't defined.
@param f the face to be detached
@param e Index of the edge to be detached
*/
template <class FaceType>
void FFDetachManifold(FaceType & f, const int e)
{
2010-02-22 02:03:23 +01:00
assert(FFCorrectness<FaceType>(f,e));
assert(!IsBorder<FaceType>(f,e)); // Never try to detach a border edge!
FaceType *ffp = f.FFp(e);
2010-02-22 02:03:23 +01:00
//int ffi=f.FFp(e);
int ffi=f.FFi(e);
f.FFp(e)=&f;
f.FFi(e)=e;
ffp->FFp(ffi)=ffp;
ffp->FFi(ffi)=ffi;
f.SetB(e);
f.ClearF(e);
ffp->SetB(ffi);
ffp->ClearF(ffi);
2010-02-22 02:03:23 +01:00
assert(FFCorrectness<FaceType>(f,e));
assert(FFCorrectness<FaceType>(*ffp,ffi));
}
/** This function detach the face from the adjacent face via the edge e.
It's possible to use it also in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't defined.
@param f the face to be detached
@param e Index of the edge to be detached
*/
2004-03-10 01:50:41 +01:00
template <class FaceType>
void FFDetach(FaceType & f, const int e)
2004-03-08 06:25:48 +01:00
{
2010-02-22 02:03:23 +01:00
assert(FFCorrectness<FaceType>(f,e));
assert(!IsBorder<FaceType>(f,e)); // Never try to detach a border edge!
int complexity;
assert(complexity=ComplexSize(f,e));
Pos< FaceType > FirstFace(&f,e); // Build the half edge
Pos< FaceType > LastFace(&f,e); // Build the half edge
FirstFace.NextF();
LastFace.NextF();
2004-03-08 06:25:48 +01:00
int cnt=0;
// then in case of non manifold face continue to advance LastFace
// until I find it become the one that
// preceed the face I want to erase
while ( LastFace.f->FFp(LastFace.z) != &f)
2004-03-08 06:25:48 +01:00
{
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity);
assert(!LastFace.IsManifold()); // We enter in this loop only if we are on a non manifold edge
assert(!LastFace.IsBorder());
LastFace.NextF();
2004-03-08 06:25:48 +01:00
cnt++;
assert(cnt<100);
2004-03-08 06:25:48 +01:00
}
assert(LastFace.f->FFp(LastFace.z)==&f);
assert(f.FFp(e)== FirstFace.f);
2004-03-08 06:25:48 +01:00
// Now we link the last one to the first one, skipping the face to be detached;
LastFace.f->FFp(LastFace.z) = FirstFace.f;
LastFace.f->FFi(LastFace.z) = FirstFace.z;
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity-1);
// At the end selfconnect the chosen edge to make a border.
f.FFp(e) = &f;
f.FFi(e) = e;
assert(ComplexSize(f,e)==1);
2004-03-08 06:25:48 +01:00
2010-02-22 02:03:23 +01:00
assert(FFCorrectness<FaceType>(*LastFace.f,LastFace.z));
assert(FFCorrectness<FaceType>(f,e));
2004-03-08 06:25:48 +01:00
}
/** This function attach the face (via the edge z1) to another face (via the edge z2). It's possible to use it also in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't define.
@param z1 Index of the edge
@param f2 Pointer to the face
@param z2 The edge of the face f2
*/
2004-03-10 01:50:41 +01:00
template <class FaceType>
void Attach(FaceType * &f, int z1, FaceType *&f2, int z2)
2004-03-08 06:25:48 +01:00
{
//typedef FEdgePosB< FACE_TYPE > ETYPE;
Pos< FaceType > EPB(f2,z2);
Pos< FaceType > TEPB;
2004-03-08 06:25:48 +01:00
TEPB = EPB;
EPB.NextF();
while( EPB.f != f2) //Alla fine del ciclo TEPB contiene la faccia che precede f2
{
TEPB = EPB;
EPB.NextF();
}
//Salvo i dati di f1 prima di sovrascrivere
2011-10-05 17:04:40 +02:00
FaceType *f1prec = f->FFp(z1);
int z1prec = f->FFi(z1);
2004-03-08 06:25:48 +01:00
//Aggiorno f1
f->FFp(z1) = TEPB.f->FFp(TEPB.z);
f->FFi(z1) = TEPB.f->FFi(TEPB.z);
2004-03-08 06:25:48 +01:00
//Aggiorno la faccia che precede f2
TEPB.f->FFp(TEPB.z) = f1prec;
TEPB.f->FFi(TEPB.z) = z1prec;
2004-03-08 06:25:48 +01:00
}
2004-03-10 01:50:41 +01:00
template <class FaceType>
void AssertAdj(FaceType & f)
2004-03-08 06:25:48 +01:00
{
assert(f.FFp(0)->FFp(f.FFi(0))==&f);
assert(f.FFp(1)->FFp(f.FFi(1))==&f);
assert(f.FFp(2)->FFp(f.FFi(2))==&f);
2004-03-08 06:25:48 +01:00
assert(f.FFp(0)->FFi(f.FFi(0))==0);
assert(f.FFp(1)->FFi(f.FFi(1))==1);
assert(f.FFp(2)->FFi(f.FFi(2))==2);
2004-03-08 06:25:48 +01:00
}
2004-03-10 01:50:41 +01:00
// Funzione di supporto usata da swap?
//template <class FaceType>
//inline void Nexts( *&f, int &z )
//{
// int t;
// t = z;
// z = (*f).Z(z);
// f = (*f).F(t);
//}
2004-03-08 06:25:48 +01:00
/**
* Check if the given face is oriented as the one adjacent to the specified edge.
* @param f Face to check the orientation
* @param z Index of the edge
*/
template <class FaceType>
bool CheckOrientation(FaceType &f, int z)
2004-03-08 06:25:48 +01:00
{
if (IsBorder(f, z))
return true;
else
{
FaceType *g = f.FFp(z);
int gi = f.FFi(z);
if (f.V0(z) == g->V1(gi))
return true;
else
return false;
}
}
2004-03-08 06:25:48 +01:00
/**
* This function change the orientation of the face by inverting the index of two vertex.
* @param z Index of the edge
*/
template <class FaceType>
void SwapEdge(FaceType &f, const int z) { SwapEdge<FaceType,true>(f,z); }
template <class FaceType, bool UpdateTopology>
void SwapEdge(FaceType &f, const int z)
{
// swap V0(z) with V1(z)
2007-05-16 17:12:40 +02:00
std::swap(f.V0(z), f.V1(z));
if(f.HasFFAdjacency() && UpdateTopology)
{
// store information to preserve topology
int z1 = (z+1)%3;
int z2 = (z+2)%3;
FaceType *g1p = f.FFp(z1);
FaceType *g2p = f.FFp(z2);
int g1i = f.FFi(z1);
int g2i = f.FFi(z2);
// g0 face topology is not affected by the swap
2004-03-08 06:25:48 +01:00
2005-12-16 11:43:23 +01:00
if (g1p != &f)
{
g1p->FFi(g1i) = z2;
f.FFi(z2) = g1i;
}
else
{
f.FFi(z2) = z2;
}
2005-12-16 11:43:23 +01:00
if (g2p != &f)
{
g2p->FFi(g2i) = z1;
f.FFi(z1) = g2i;
}
else
{
f.FFi(z1) = z1;
}
// finalize swap
f.FFp(z1) = g2p;
f.FFp(z2) = g1p;
}
2004-03-08 06:25:48 +01:00
}
2004-10-22 15:41:06 +02:00
/*!
* Perform a Geometric Check about the normals of a edge flip.
* return trues if after the flip the normals does not change more than the given threshold angle;
* it assumes that the flip is topologically correct.
*
* \param f the face
* \param z the edge index
* \param angleRad the threshold angle
*
* oldD1 ___________ newD1
* |\ |
* | \ |
* | \ |
* | f z\ |
* | \ |
* |__________\|
* newD0 oldD0
*/
template <class FaceType>
static bool CheckFlipEdgeNormal(FaceType &f, const int z, const float angleRad)
{
typedef typename FaceType::VertexType VertexType;
typedef typename VertexType::CoordType CoordType;
typedef typename VertexType::ScalarType ScalarType;
VertexType *OldDiag0 = f.V0(z);
VertexType *OldDiag1 = f.V1(z);
VertexType *NewDiag0 = f.V2(z);
VertexType *NewDiag1 = f.FFp(z)->V2(f.FFi(z));
assert((NewDiag1 != NewDiag0) && (NewDiag1 != OldDiag0) && (NewDiag1 != OldDiag1));
CoordType oldN0 = NormalizedNormal( NewDiag0->cP(),OldDiag0->cP(),OldDiag1->cP());
CoordType oldN1 = NormalizedNormal( NewDiag1->cP(),OldDiag1->cP(),OldDiag0->cP());
CoordType newN0 = NormalizedNormal( OldDiag0->cP(),NewDiag1->cP(),NewDiag0->cP());
CoordType newN1 = NormalizedNormal( OldDiag1->cP(),NewDiag0->cP(),NewDiag1->cP());
if(AngleN(oldN0,newN0) > angleRad) return false;
if(AngleN(oldN0,newN1) > angleRad) return false;
if(AngleN(oldN1,newN0) > angleRad) return false;
if(AngleN(oldN1,newN1) > angleRad) return false;
return true;
}
/*!
* Perform a Topological check to see if the z-th edge of the face f can be flipped.
* No Geometric test are done. (see CheckFlipEdgeNormal)
2004-10-22 15:41:06 +02:00
* \param f pointer to the face
* \param z the edge index
*/
template <class FaceType>
static bool CheckFlipEdge(FaceType &f, int z)
{
2010-10-01 22:27:30 +02:00
typedef typename FaceType::VertexType VertexType;
typedef typename vcg::face::Pos< FaceType > PosType;
if (z<0 || z>2) return false;
2004-10-22 15:41:06 +02:00
// boundary edges cannot be flipped
2010-10-01 22:27:30 +02:00
if (face::IsBorder(f, z)) return false;
2004-10-22 15:41:06 +02:00
FaceType *g = f.FFp(z);
int w = f.FFi(z);
// check if the vertices of the edge are the same
2010-10-01 22:27:30 +02:00
// e.g. the mesh has to be well oriented
2004-10-22 15:41:06 +02:00
if (g->V(w)!=f.V1(z) || g->V1(w)!=f.V(z) )
return false;
// check if the flipped edge is already present in the mesh
2010-10-01 22:27:30 +02:00
// f_v2 and g_v2 are the vertices of the new edge
VertexType *f_v2 = f.V2(z);
2004-10-22 15:41:06 +02:00
VertexType *g_v2 = g->V2(w);
2010-10-01 22:27:30 +02:00
// just a sanity check. If this happens the mesh is not manifold.
if (f_v2 == g_v2) return false;
// Now walk around f_v2, one of the two vertexes of the new edge
// and check that it does not already exists.
PosType pos(&f, (z+2)%3, f_v2);
PosType startPos=pos;
2004-10-22 15:41:06 +02:00
do
{
pos.NextE();
2010-10-01 22:27:30 +02:00
if (g_v2 == pos.VFlip())
2004-10-22 15:41:06 +02:00
return false;
}
2010-10-01 22:27:30 +02:00
while (pos != startPos);
2004-10-22 15:41:06 +02:00
return true;
}
2004-10-22 15:41:06 +02:00
/*!
* Flip the z-th edge of the face f.
* Check for topological correctness first using <CODE>CheckFlipFace()</CODE>.
* \param f pointer to the face
* \param z the edge index
2005-12-16 11:47:48 +01:00
*
* Note: For <em>edge flip</em> we intend the swap of the diagonal of the rectangle
* formed by the face \a f and the face adjacent to the specified edge.
2004-10-22 15:41:06 +02:00
*/
template <class FaceType>
static void FlipEdge(FaceType &f, const int z)
{
assert(z>=0);
assert(z<3);
2005-11-23 14:04:26 +01:00
assert( !IsBorder(f,z) );
2004-10-22 15:41:06 +02:00
assert( face::IsManifold<FaceType>(f, z));
FaceType *g = f.FFp(z);
int w = f.FFi(z);
assert( g->V(w) == f.V1(z) );
assert( g->V1(w)== f.V(z) );
assert( g->V2(w)!= f.V(z) );
assert( g->V2(w)!= f.V1(z) );
assert( g->V2(w)!= f.V2(z) );
f.V1(z) = g->V2(w);
g->V1(w) = f.V2(z);
f.FFp(z) = g->FFp((w+1)%3);
2004-10-22 15:41:06 +02:00
f.FFi(z) = g->FFi((w+1)%3);
g->FFp(w) = f.FFp((z+1)%3);
2004-10-22 15:41:06 +02:00
g->FFi(w) = f.FFi((z+1)%3);
f.FFp((z+1)%3) = g;
2004-10-22 15:41:06 +02:00
f.FFi((z+1)%3) = (w+1)%3;
g->FFp((w+1)%3) = &f;
2004-10-22 15:41:06 +02:00
g->FFi((w+1)%3) = (z+1)%3;
if(f.FFp(z)==g)
{
f.FFp(z) = &f;
f.FFi(z) = z;
}
else
{
f.FFp(z)->FFp( f.FFi(z) ) = &f;
f.FFp(z)->FFi( f.FFi(z) ) = z;
2004-10-22 15:41:06 +02:00
}
if(g->FFp(w)==&f)
{
g->FFp(w)=g;
g->FFi(w)=w;
}
else
{
g->FFp(w)->FFp( g->FFi(w) ) = g;
g->FFp(w)->FFi( g->FFi(w) ) = w;
2004-10-22 15:41:06 +02:00
}
}
2004-03-08 06:25:48 +01:00
// Stacca la faccia corrente dalla catena di facce incidenti sul vertice z,
// NOTA funziona SOLO per la topologia VF!!!
// usata nelle classi di collapse
2004-03-10 01:50:41 +01:00
template <class FaceType>
2004-08-06 00:27:00 +02:00
void VFDetach(FaceType & f, int z)
2004-03-08 06:25:48 +01:00
{
2004-08-06 00:27:00 +02:00
if(f.V(z)->VFp()==&f ) //if it is the first face detach from the begin
2004-03-08 06:25:48 +01:00
{
2004-08-06 00:27:00 +02:00
int fz = f.V(z)->VFi();
f.V(z)->VFp() = f.VFp(fz);
f.V(z)->VFi() = f.VFi(fz);
2004-03-08 06:25:48 +01:00
}
2004-08-06 00:27:00 +02:00
else // scan the list of faces in order to finde the current face f to be detached
2004-03-08 06:25:48 +01:00
{
2004-08-06 00:27:00 +02:00
VFIterator<FaceType> x(f.V(z)->VFp(),f.V(z)->VFi());
VFIterator<FaceType> y;
for(;;)
2004-03-08 06:25:48 +01:00
{
2004-08-06 00:27:00 +02:00
y = x;
++x;
assert(x.f!=0);
if(x.f==&f) // found!
2004-03-08 06:25:48 +01:00
{
2004-08-06 00:27:00 +02:00
y.f->VFp(y.z) = f.VFp(z);
y.f->VFi(y.z) = f.VFi(z);
2004-03-08 06:25:48 +01:00
break;
}
}
}
}
2004-08-04 22:50:12 +02:00
/// Append a face in VF list of vertex f->V(z)
template <class FaceType>
void VFAppend(FaceType* & f, int z)
{
typename FaceType::VertexType *v = f->V(z);
2004-08-06 03:47:57 +02:00
if (v->VFp()!=0)
{
FaceType *f0=v->VFp();
int z0=v->VFi();
//append
f->VFp(z)=f0;
f->VFi(z)=z0;
}
2004-08-04 22:50:12 +02:00
v->VFp()=f;
v->VFi()=z;
}
/*!
* Compute the set of vertices adjacent to a given vertex using VF adjacency.
* \param vp pointer to the vertex whose star has to be computed.
* \param starVec a std::vector of Vertex pointer that is filled with the adjacent vertices.
*
*/
template <class FaceType>
void VVStarVF( typename FaceType::VertexType* vp, std::vector<typename FaceType::VertexType *> &starVec)
{
typedef typename FaceType::VertexType* VertexPointer;
starVec.clear();
face::VFIterator<FaceType> vfi(vp);
while(!vfi.End())
{
starVec.push_back(vfi.F()->V1(vfi.I()));
starVec.push_back(vfi.F()->V2(vfi.I()));
++vfi;
}
std::sort(starVec.begin(),starVec.end());
typename std::vector<VertexPointer>::iterator new_end = std::unique(starVec.begin(),starVec.end());
starVec.resize(new_end-starVec.begin());
}
2011-10-05 17:04:40 +02:00
/*!
* Compute the set of faces adjacent to a given vertex using VF adjacency.
* \param vp pointer to the vertex whose star has to be computed.
* \param faceVec a std::vector of Face pointer that is filled with the adjacent faces.
*
*/
template <class FaceType>
void VFStarVF( typename FaceType::VertexType* vp, std::vector<FaceType *> &faceVec)
{
typedef typename FaceType::VertexType* VertexPointer;
faceVec.clear();
face::VFIterator<FaceType> vfi(vp);
while(!vfi.End())
{
faceVec.push_back(vfi.F());
++vfi;
}
}
/*!
* Check if two faces share and edge through the FF topology.
* \param f0,f1 the two face to be checked
* \param i0,i1 the index of the shared edge;
*/
template <class FaceType>
bool ShareEdgeFF(FaceType *f0,FaceType *f1, int *i0=0, int *i1=0)
{
assert((!f0->IsD())&&(!f1->IsD()));
for (int i=0;i<3;i++)
if (f0->FFp(i)==f1)
{
if((i0!=0) && (i1!=0)) {
*i0=i;
*i1=f0->FFi(i);
}
return true;
}
return false;
}
/*!
* Count the number of vertices shared between two faces.
* \param f0,f1 the two face to be checked
* ;
*/
template <class FaceType>
int CountSharedVertex(FaceType *f0,FaceType *f1)
{
int sharedCnt=0;
for (int i=0;i<3;i++)
for (int j=0;j<3;j++)
if (f0->V(i)==f1->V(j)) {
sharedCnt++;
}
return sharedCnt;
}
/*!
* find the first shared vertex between two faces.
* \param f0,f1 the two face to be checked
* \param i,j the indexes of the shared vertex in the two faces. Meaningful only if there is one single shared vertex
* ;
*/
template <class FaceType>
bool SharedVertex(FaceType *f0,FaceType *f1, int &i, int &j)
{
for (i=0;i<3;i++)
for (j=0;j<3;j++)
if (f0->V(i)==f1->V(j)) return true;
return false;
}
/*@}*/
2004-03-08 06:25:48 +01:00
} // end namespace
2004-03-10 01:50:41 +01:00
} // end namespace
2004-03-08 06:25:48 +01:00
#endif