vcglib/vcg/simplex/face/component.h

699 lines
30 KiB
C
Raw Normal View History

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_MESH
#error "This file should not be included alone. It is automatically included by complex.h"
#endif
#ifndef __VCG_FACE_PLUS_COMPONENT
#define __VCG_FACE_PLUS_COMPONENT
namespace vcg {
namespace face {
/** \addtogroup FaceComponentGroup
@{
*/
/*------------------------- EMPTY CORE COMPONENTS -----------------------------------------*/
template <class T> class EmptyCore: public T {
public:
inline typename T::VertexType * &V( const int ) { assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::VertexType * cV( const int ) const { assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::VertexType * &FVp( const int i ) { return this->V(i); }
inline typename T::VertexType * cFVp( const int i ) const { return this->cV(i); }
inline typename T::CoordType &P( const int ) { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
inline typename T::CoordType cP( const int ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
static bool HasVertexRef() { return false; }
static bool HasFVAdjacency() { return false; }
typedef typename T::VertexType::NormalType NormalType;
NormalType &N() { static NormalType dummy_normal(0, 0, 0); assert(0); return dummy_normal; }
NormalType cN() const { static NormalType dummy_normal(0, 0, 0); return dummy_normal; }
NormalType &WN(int) { static NormalType dummy_normal(0, 0, 0); assert(0); return dummy_normal; }
NormalType cWN(int) const { static NormalType dummy_normal(0, 0, 0); return dummy_normal; }
typedef int WedgeTexCoordType;
typedef vcg::TexCoord2<float,1> TexCoordType;
TexCoordType &WT(const int) { static TexCoordType dummy_texture; assert(0); return dummy_texture;}
TexCoordType const &cWT(const int) const { static TexCoordType dummy_texture; return dummy_texture;}
int &Flags() { static int dummyflags(0); assert(0); return dummyflags; }
int cFlags() const { return 0; }
static bool HasFlags() { return false; }
inline void InitIMark() { }
inline int &IMark() { assert(0); static int tmp=-1; return tmp;}
inline int cIMark() const { return 0;}
typedef int MarkType;
typedef float QualityType;
typedef Point3f Quality3Type;
typedef vcg::Color4b ColorType;
ColorType &C() { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; }
ColorType cC() const { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; }
ColorType &WC(const int) { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; }
ColorType cWC(const int) const { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; }
QualityType &Q() { static QualityType dummyQuality(0); assert(0); return dummyQuality; }
QualityType cQ() const { static QualityType dummyQuality(0); assert(0); return dummyQuality; }
Quality3Type &Q3() { static Quality3Type dummyQuality3(0,0,0); assert(0); return dummyQuality3; }
Quality3Type cQ3() const { static Quality3Type dummyQuality3(0,0,0); assert(0); return dummyQuality3; }
static bool HasColor() { return false; }
static bool HasQuality() { return false; }
static bool HasQuality3() { return false; }
static bool HasMark() { return false; }
static bool HasNormal() { return false; }
static bool HasWedgeColor() { return false; }
static bool HasWedgeNormal() { return false; }
static bool HasWedgeTexCoord() { return false; }
// Interfaces for dynamic types
2012-12-17 16:58:16 +01:00
inline bool IsColorEnabled( ) const { return T::FaceType::HasColor(); }
inline bool IsCurvatureDirEnabled( ) const { return T::FaceType::HasCurvatureDir(); }
inline bool IsMarkEnabled( ) const { return T::FaceType::HasMark(); }
inline bool IsNormalEnabled( ) const { return T::FaceType::HasNormal(); }
inline bool IsQualityEnabled( ) const { return T::FaceType::HasQuality(); }
inline bool IsQuality3Enabled( ) const { return T::FaceType::HasQuality3(); }
inline bool IsWedgeColorEnabled( ) const { return T::FaceType::HasWedgeColor(); }
inline bool IsWedgeNormalEnabled( ) const { return T::FaceType::HasWedgeNormal(); }
inline bool IsWedgeTexCoordEnabled( ) const { return T::FaceType::HasWedgeTexCoord(); }
typedef int VFAdjType;
typename T::FacePointer &VFp(int) { static typename T::FacePointer fp=0; assert(0); return fp; }
typename T::FacePointer cVFp(int) const { static typename T::FacePointer fp=0; assert(0); return fp; }
typename T::FacePointer &FFp(int) { static typename T::FacePointer fp=0; assert(0); return fp; }
typename T::FacePointer cFFp(int) const { static typename T::FacePointer fp=0; assert(0); return fp; }
typename T::EdgePointer &FEp(int) { static typename T::EdgePointer fp=0; assert(0); return fp; }
typename T::EdgePointer cFEp(int) const { static typename T::EdgePointer fp=0; assert(0); return fp; }
typename T::HEdgePointer &FHp() { static typename T::HEdgePointer fp=0; assert(0); return fp; }
typename T::HEdgePointer cFHp() const { static typename T::HEdgePointer fp=0; assert(0); return fp; }
char &VFi(int) { static char z=0; assert(0); return z;}
char &FFi(int) { static char z=0; assert(0); return z;}
char cVFi(int) const { static char z=0; assert(0); return z;}
char cFFi(int) const { static char z=0; assert(0); return z;}
bool IsVFInitialized(const int j) const {return static_cast<const typename T::FaceType *>(this)->cVFi(j)!=-1;}
void VFClear(int j) {
if(IsVFInitialized(j)) {
static_cast<typename T::FacePointer>(this)->VFp(j)=0;
static_cast<typename T::FacePointer>(this)->VFi(j)=-1;
}
}
static bool HasVFAdjacency() { return false; }
static bool HasFFAdjacency() { return false; }
static bool HasFEAdjacency() { return false; }
static bool HasFHAdjacency() { return false; }
typedef int CurvatureDirType;
Point3f &PD1() { static Point3f dummy(0,0,0); assert(0); return dummy;}
Point3f &PD2() { static Point3f dummy(0,0,0); assert(0); return dummy;}
Point3f cPD1() const { static Point3f dummy(0,0,0); assert(0); return dummy;}
Point3f cPD2() const { static Point3f dummy(0,0,0); assert(0); return dummy;}
float &K1() { static float dummy(0); assert(0); return dummy;}
float &K2() { static float dummy(0); assert(0); return dummy;}
float cK1() const { static float dummy(0); assert(0); return dummy;}
float cK2() const { static float dummy(0); assert(0); return dummy;}
static bool HasCurvatureDir() { return false; }
inline void SetVN(const int & /*n*/) {assert(0);}
static bool HasPolyInfo() { return false; }
template <class RightValueType>
void ImportData(const RightValueType & rightF) {T::ImportData(rightF);}
inline void Alloc(const int & ns) {T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static void Name(std::vector<std::string> & name){T::Name(name);}
};
/*-------------------------- VertexRef ----------------------------------------*/
/*! \brief The references to the vertexes of a triangular face
*
* Stored as three pointers to the VertexType
*/
template <class T> class VertexRef: public T {
public:
VertexRef(){
v[0]=0;
v[1]=0;
v[2]=0;
}
typedef typename T::VertexType::CoordType CoordType;
typedef typename T::VertexType::ScalarType ScalarType;
inline typename T::VertexType * &V( const int j ) { assert(j>=0 && j<3); return v[j]; } /// \brief The pointer to the i-th vertex
inline typename T::VertexType * cV( const int j ) const { assert(j>=0 && j<3); return v[j]; }
inline CoordType &P( const int j ) { assert(j>=0 && j<3); return v[j]->P(); } /// \brief Shortcut: the position of the i-th vertex (equivalent to \c V(i)->P() )
inline CoordType cP( const int j ) const { assert(j>=0 && j<3); return v[j]->cP(); }
inline typename T::VertexType * & V0( const int j ) { return V(j);} /** \brief Return the pointer to the j-th vertex of the face. */
inline typename T::VertexType * & V1( const int j ) { return V((j+1)%3);} /** \brief Return the pointer to the ((j+1)%3)-th vertex of the face. */
inline typename T::VertexType * & V2( const int j ) { return V((j+2)%3);} /** \brief Return the pointer to the ((j+2)%3)-th vertex of the face. */
inline typename T::VertexType * cV0( const int j ) const { return cV(j);}
inline typename T::VertexType * cV1( const int j ) const { return cV((j+1)%3);}
inline typename T::VertexType * cV2( const int j ) const { return cV((j+2)%3);}
inline CoordType & P0( const int j ) { return V(j)->P();}
inline CoordType & P1( const int j ) { return V((j+1)%3)->P();}
inline CoordType & P2( const int j ) { return V((j+2)%3)->P();}
inline const CoordType & cP0( const int j ) const { return cV(j)->P();}
inline const CoordType & cP1( const int j ) const { return cV((j+1)%3)->P();}
inline const CoordType & cP2( const int j ) const { return cV((j+2)%3)->P();}
// Small comment about the fact that the pointers are zero filled.
// The importLocal is meant for copyng stuff between very different meshes, so copying the pointers would be meaningless.
// if you are using ImportData for copying internally simplex you have to set up all the pointers by hand.
template <class RightValueType>
void ImportData(const RightValueType & rightF){ T::ImportData(rightF);}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasVertexRef() { return true; }
static bool HasFVAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("VertexRef"));T::Name(name);}
private:
typename T::VertexType *v[3];
};
template <class T>
void ComputeNormal(T &f) { f.N().Import(vcg::Normal<T>(f)); }
template <class T>
void ComputeNormalizedNormal(T &f) { f.N().Import(vcg::NormalizedNormal<T>(f)); }
template <class A, class T> class NormalAbs: public T {
public:
typedef A NormalType;
inline NormalType &N() { return _norm; }
inline NormalType cN() const { return _norm; }
template <class RightValueType>
void ImportData(const RightValueType & rightF)
{
if(rightF.IsNormalEnabled()) N().Import(rightF.cN());
T::ImportData(rightF);
}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasNormal() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("NormalAbs"));T::Name(name);}
private:
NormalType _norm;
};
template <class T> class WedgeNormal: public T {
public:
typedef typename T::VertexType::NormalType NormalType;
inline NormalType &WN(int j) { return _wnorm[j]; }
inline NormalType cWN(int j) const { return _wnorm[j]; }
template <class RightValueType>
void ImportData(const RightValueType & rightF){ if(rightF.IsWedgeNormalEnabled()) for (int i=0; i<3; ++i) { WN(i) = rightF.cWN(i); } T::ImportData(rightF);}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasWedgeNormal() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeNormal"));T::Name(name);}
private:
NormalType _wnorm[3];
};
template <class A, class T> class WedgeRealNormal: public T {
public:
typedef A NormalType;
inline NormalType &WN(int i) { return _wn[i]; }
inline NormalType cWN(int i) const { return _wn[i]; }
template <class RightValueType>
void ImportData(const RightValueType & rightF){ if(RightValueType::HasWedgeNormal()) for (int i=0; i<3; ++i) { WN(i) = rightF.cWN(i); } T::ImportData(rightF);}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasWedgeNormal() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeRealNormal"));T::Name(name);}
private:
NormalType _wn[3];
};
template <class TT> class WedgeRealNormal3s: public WedgeRealNormal<vcg::Point3s, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeRealNormal2s"));TT::Name(name);}};
template <class TT> class WedgeRealNormal3f: public WedgeRealNormal<vcg::Point3f, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeRealNormal2f"));TT::Name(name);}};
template <class TT> class WedgeRealNormal3d: public WedgeRealNormal<vcg::Point3d, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeRealNormal2d"));TT::Name(name);}};
template <class T> class Normal3s: public NormalAbs<vcg::Point3s, T> {
public:static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3s"));T::Name(name);}
};
template <class T> class Normal3f: public NormalAbs<vcg::Point3f, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3f"));T::Name(name);}
};
template <class T> class Normal3d: public NormalAbs<vcg::Point3d, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3d"));T::Name(name);}
};
/*-------------------------- TexCoord ----------------------------------------*/
template <class A, class T> class WedgeTexCoord: public T {
public:
typedef int WedgeTexCoordType;
typedef A TexCoordType;
TexCoordType &WT(const int i) { return _wt[i]; }
TexCoordType cWT(const int i) const { return _wt[i]; }
template <class RightValueType>
void ImportData(const RightValueType & rightF){
if(rightF.IsWedgeTexCoordEnabled())
for (int i=0; i<3; ++i) { WT(i) = rightF.cWT(i); }
T::ImportData(rightF);
}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasWedgeTexCoord() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeTexCoord"));T::Name(name);}
private:
TexCoordType _wt[3];
};
template <class TT> class WedgeTexCoord2s: public WedgeTexCoord<TexCoord2<short,1>, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeTexCoord2s"));TT::Name(name);}
};
template <class TT> class WedgeTexCoord2f: public WedgeTexCoord<TexCoord2<float,1>, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeTexCoord2f"));TT::Name(name);}
};
template <class TT> class WedgeTexCoord2d: public WedgeTexCoord<TexCoord2<double,1>, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeTexCoord2d"));TT::Name(name);}
};
2012-03-28 14:39:22 +02:00
/*------------------------- BitFlags -----------------------------------------*/
/*! \brief \em Component: Per face \b Flags
This component stores a 32 bit array of bit flags. These bit flags are used for keeping track of selection, deletion, visiting etc. \sa \ref flags for more details on common uses of flags.
*/
template <class T> class BitFlags: public T {
public:
BitFlags():_flags(0) {}
int &Flags() {return _flags; }
int cFlags() const {return _flags; }
template <class RightValueType>
void ImportData(const RightValueType & rightF){
if(RightValueType::HasFlags())
Flags() = rightF.cFlags();
T::ImportData(rightF);
}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasFlags() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("BitFlags"));T::Name(name);}
private:
int _flags;
};
/*-------------------------- Color ----------------------------------*/
template <class A, class T> class Color: public T {
public:
typedef A ColorType;
Color():_color(vcg::Color4b::White) {}
ColorType &C() { return _color; }
ColorType cC() const { return _color; }
template <class RightValueType>
void ImportData(const RightValueType & rightF){
if(rightF.IsColorEnabled()) C() = rightF.cC();
T::ImportData(rightF);
}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasColor() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Color"));T::Name(name);}
private:
ColorType _color;
};
template <class A, class T> class WedgeColor: public T {
public:
typedef A ColorType;
ColorType &WC(int i) { return _color[i]; }
ColorType cWC(int i) const { return _color[i]; }
template <class RightValueType>
void ImportData(const RightValueType & rightF){
if (rightF.IsWedgeColorEnabled())
{
for (int i=0; i<3; ++i) { WC(i) = rightF.cWC(i); }
}
T::ImportData(rightF);
}
static bool HasWedgeColor() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeColor"));T::Name(name);}
private:
ColorType _color[3];
};
2009-06-09 20:23:50 +02:00
template <class T> class WedgeColor4b: public WedgeColor<vcg::Color4b, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeColor4b"));T::Name(name);}
2009-06-09 20:23:50 +02:00
};
template <class T> class WedgeColor4f: public WedgeColor<vcg::Color4f, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeColor4f"));T::Name(name);}
2009-06-09 20:23:50 +02:00
};
template <class T> class Color4b: public Color<vcg::Color4b, T> { public:
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Color4b"));T::Name(name);}
};
/*-------------------------- Quality ----------------------------------*/
template <class A, class T> class Quality: public T {
public:
typedef A QualityType;
Quality():_quality(0) {}
QualityType &Q() { return _quality; }
QualityType cQ() const { return _quality; }
template <class RightValueType>
void ImportData(const RightValueType & rightF){
if(rightF.IsQualityEnabled())
Q() = rightF.cQ();
T::ImportData(rightF);
}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasQuality() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality"));T::Name(name);}
private:
QualityType _quality;
};
template <class T> class Qualitys: public Quality<short, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualitys"));T::Name(name);}
};
template <class T> class Qualityf: public Quality<float, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityf"));T::Name(name);}
};
template <class T> class Qualityd: public Quality<double, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityd"));T::Name(name);}
};
2011-05-25 18:28:18 +02:00
/*-------------------------- Quality3 ----------------------------------*/
2011-05-25 18:28:18 +02:00
template <class A, class T> class Quality3: public T {
public:
typedef vcg::Point3<A> Quality3Type;
Quality3Type &Q3() { return _quality; }
Quality3Type cQ3() const { return _quality; }
template <class RightValueType>
void ImportData(const RightValueType & rightF){
if(rightF.IsQuality3Enabled()) Q3() = rightF.cQ3();
T::ImportData(rightF);
}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasQuality3() { return true; }
2011-05-25 18:28:18 +02:00
static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3"));T::Name(name);}
private:
Quality3Type _quality;
2011-05-25 18:28:18 +02:00
};
template <class T> class Quality3s: public Quality3<short, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3s"));T::Name(name);}
};
template <class T> class Quality3f: public Quality3<float, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3f"));T::Name(name);}
};
template <class T> class Quality3d: public Quality3<double, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3d"));T::Name(name);}
};
/*-------------------------- INCREMENTAL MARK ----------------------------------------*/
/*! \brief Per vertex \b Incremental \b Mark
It is just an \c int that allows to efficently (in constant time) un-mark the whole mesh. \sa UnmarkAll
*/
template <class T> class Mark: public T {
public:
Mark():_imark(0){}
inline int &IMark() { return _imark;}
inline int cIMark() const { return _imark;}
inline void InitIMark() { _imark = 0; }
static bool HasMark() { return true; }
template <class RightValueType>
void ImportData(const RightValueType & rightF){
if(rightF.IsMarkEnabled())
IMark() = rightF.cIMark();
T::ImportData(rightF);
}
static void Name(std::vector<std::string> & name){name.push_back(std::string("Mark"));T::Name(name);}
private:
int _imark;
};
2012-03-28 14:39:22 +02:00
/*-------------------------- Curvature Direction ----------------------------------*/
template <class S>
struct CurvatureDirBaseType{
typedef Point3<S> VecType;
typedef S ScalarType;
CurvatureDirBaseType () {}
Point3<S>max_dir,min_dir; // max and min curvature direction
S k1,k2;// max and min curvature values
};
2012-03-28 14:39:22 +02:00
template <class A, class TT> class CurvatureDir: public TT {
public:
typedef A CurvatureDirType;
typedef typename CurvatureDirType::VecType VecType;
typedef typename CurvatureDirType::ScalarType ScalarType;
VecType &PD1() { return _curv.max_dir;}
VecType &PD2() { return _curv.min_dir;}
VecType cPD1() const { return _curv.max_dir;}
VecType cPD2() const { return _curv.min_dir;}
ScalarType &K1() { return _curv.k1;}
ScalarType &K2() { return _curv.k2;}
ScalarType cK1() const {return _curv.k1;}
ScalarType cK2() const {return _curv.k2;}
template < class RightValueType>
void ImportData(const RightValueType & rightF ) {
if(rightF.IsCurvatureDirEnabled()) {
PD1() = rightF.cPD1(); PD2() = rightF.cPD2();
K1() = rightF.cK1(); K2() = rightF.cK2();
}
TT::ImportData(rightF);
}
static bool HasCurvatureDir() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDir"));TT::Name(name);}
2012-03-28 14:39:22 +02:00
private:
CurvatureDirType _curv;
};
template <class T> class CurvatureDirf: public CurvatureDir<CurvatureDirBaseType<float>, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDirf"));T::Name(name);}
};
template <class T> class CurvatureDird: public CurvatureDir<CurvatureDirBaseType<double>, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDird"));T::Name(name);}
};
/*----------------------------- VFADJ ------------------------------*/
/*! \brief \em Component: Per Face \b Vertex-Face adjacency relation
It stores a pointer to the next face of the list of faces incident on a vertex that is stored in a distributed way on the faces themselves.
Note that if you use this component it is expected that on the Vertex you use also the corresponding vcg::vertex::VFAdj component.
Note that for this component we have three class of values:
- \b valid: a valid pointer in the range of the vector of faces
- \b null: a null pointer, used to indicate the end of the list
- \b uninitialized: a special value that you can test/set with the IsVFInitialized()/VFClear() functions;
it is used to indicate when the VF Topology is not computed.
\sa vcg::tri::UpdateTopology for functions that compute this relation
\sa vcg::vertex::VFAdj
\sa iterators
*/
template <class T> class VFAdj: public T {
public:
VFAdj(){
_vfp[0]=0;
_vfp[1]=0;
_vfp[2]=0;
_vfi[0]=-1;
_vfi[1]=-1;
_vfi[2]=-1;
}
typename T::FacePointer &VFp(const int j) { assert(j>=0 && j<3); return _vfp[j]; }
typename T::FacePointer cVFp(const int j) const { assert(j>=0 && j<3); return _vfp[j]; }
char &VFi(const int j) {return _vfi[j]; }
2013-02-19 14:56:37 +01:00
char cVFi(const int j)const {return _vfi[j]; }
template <class RightValueType>
void ImportData(const RightValueType & rightF){T::ImportData(rightF);}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasVFAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("VFAdj"));T::Name(name);}
private:
typename T::FacePointer _vfp[3] ;
char _vfi[3] ;
};
/*----------------------------- EFADJ ------------------------------*/
template <class T> class EFAdj: public T {
public:
EFAdj(){
_efp[0]=0;
_efp[1]=0;
_efp[2]=0;
_efi[0]=-1;
_efi[1]=-1;
_efi[2]=-1;
}
typename T::FacePointer &EFp(const int j) { assert(j>=0 && j<3); return _efp[j]; }
typename T::FacePointer cEFp(const int j) const { assert(j>=0 && j<3); return _efp[j]; }
char &VFi(const int j) {return _efi[j]; }
template <class RightValueType>
void ImportData(const RightValueType & rightF){T::ImportData(rightF);}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasEFAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("EFAdj"));T::Name(name);}
private:
typename T::FacePointer _efp[3] ;
char _efi[3] ;
};
/*----------------------------- FFADJ ------------------------------*/
/*! \brief \em Component: Per Face \b Face-Face adjacency relation
It encodes the adjacency of faces through edges; for 2-manifold edges it just point to the other face,
and for non manifold edges (where more than 2 faces share the same edge) it stores a pointer to the next
face of the ring of faces incident on a edge.
Note that border faces points to themselves.
NULL pointer is used as a special value to indicate when the FF Topology is not computed.
\sa vcg::tri::UpdateTopology for functions that compute this relation
\sa vcg::vertex::VFAdj
\sa iterators
*/
template <class T> class FFAdj: public T {
public:
FFAdj(){
_ffp[0]=0;
_ffp[1]=0;
_ffp[2]=0;
}
typename T::FacePointer &FFp(const int j) { assert(j>=0 && j<3); return _ffp[j]; }
typename T::FacePointer cFFp(const int j) const { assert(j>=0 && j<3); return _ffp[j]; }
char &FFi(const int j) { return _ffi[j]; }
char cFFi(const int j) const { return _ffi[j]; }
typename T::FacePointer &FFp1( const int j ) { return FFp((j+1)%3);}
typename T::FacePointer &FFp2( const int j ) { return FFp((j+2)%3);}
typename T::FacePointer cFFp1( const int j ) const { return FFp((j+1)%3);}
typename T::FacePointer cFFp2( const int j ) const { return FFp((j+2)%3);}
template <class RightValueType>
void ImportData(const RightValueType & rightF){T::ImportData(rightF);}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasFFAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("FFAdj"));T::Name(name);}
private:
typename T::FacePointer _ffp[3] ;
char _ffi[3] ;
};
/*----------------------------- FEADJ ------------------------------*/
template <class T> class FEAdj: public T {
public:
FEAdj(){
_fep[0]=0;
_fep[1]=0;
_fep[2]=0;
}
typename T::EdgePointer &FEp( int j) { assert(j>=0 && j<3); return _fep[j]; }
typename T::EdgePointer cFEp( int j) const { assert(j>=0 && j<3); return _fep[j]; }
typename T::EdgePointer &FEp1( int j ) { return FEp((j+1)%3);}
typename T::EdgePointer &FEp2( int j ) { return FEp((j+2)%3);}
typename T::EdgePointer FEp1( int j ) const { return FEp((j+1)%3);}
typename T::EdgePointer FEp2( int j ) const { return FEp((j+2)%3);}
template <class RightValueType>
void ImportData(const RightValueType & rightF){T::ImportData(rightF);}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasFEAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("FEAdj"));T::Name(name);}
private:
typename T::EdgePointer _fep[3] ;
char _fei[3] ;
};
/*----------------------------- FHADJ ------------------------------*/
template <class T> class FHAdj: public T {
public:
FHAdj(){_fh=0;}
typename T::HEdgePointer &FHp( ) { return _fh; }
typename T::HEdgePointer cFHp( ) const { return _fh; }
template <class RightValueType>
void ImportData(const RightValueType & rightF){T::ImportData(rightF);}
inline void Alloc(const int & ns){T::Alloc(ns);}
inline void Dealloc(){T::Dealloc();}
static bool HasFHAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("FHAdj"));T::Name(name);}
private:
typename T::HEdgePointer _fh ;
};
/** @} */ // End Doxygen FaceComponentGroup
} // end namespace face
}// end namespace vcg
#endif