2008-05-27 23:38:37 +02:00
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright ( C ) 2004 \ / ) \ / *
* Visual Computing Lab / \ / | *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved . *
* *
* This program is free software ; you can redistribute it and / or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation ; either version 2 of the License , or *
* ( at your option ) any later version . *
* *
* This program is distributed in the hope that it will be useful , *
* but WITHOUT ANY WARRANTY ; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the *
* GNU General Public License ( http : //www.gnu.org/licenses/gpl.txt) *
* for more details . *
* *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/****************************************************************************
History
$ Log : sampling . h , v $
The sampling Class has a set of static functions , that you can call to sample the surface of a mesh .
Each function is templated on the mesh and on a Sampler object s .
Each function calls many time the sample object with the sampling point as parameter .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
# ifndef __VCGLIB_POINT_SAMPLING
# define __VCGLIB_POINT_SAMPLING
# include <vcg/complex/trimesh/stat.h>
2008-07-20 16:34:26 +02:00
# include <vcg/complex/trimesh/update/topology.h>
# include <vcg/space/box2.h>
2008-05-27 23:38:37 +02:00
namespace vcg
{
namespace tri
{
2008-06-20 17:11:30 +02:00
/// Trivial Sampler, an example sampler object that show the required interface used by the sampling class.
/// Most of the sampling classes call the AddFace method with the face containing the sample and its baricentric coord.
template < class MeshType >
class TrivialSampler
{
public :
typedef typename MeshType : : CoordType CoordType ;
typedef typename MeshType : : VertexType VertexType ;
typedef typename MeshType : : FaceType FaceType ;
TrivialSampler ( ) { } ;
std : : vector < CoordType > sampleVec ;
void AddVert ( const VertexType & p )
{
sampleVec . push_back ( p . cP ( ) ) ;
}
2008-07-03 23:39:37 +02:00
void AddFace ( const FaceType & f , const CoordType & p )
2008-06-20 17:11:30 +02:00
{
sampleVec . push_back ( f . P ( 0 ) * p [ 0 ] + f . P ( 1 ) * p [ 1 ] + f . P ( 2 ) * p [ 2 ] ) ;
}
2008-06-21 01:33:24 +02:00
2008-07-03 23:39:37 +02:00
void AddTextureSample ( const FaceType & , const CoordType & , const Point2i & )
2008-06-21 01:33:24 +02:00
{
// Retrieve the colorof the sample from the face f using the barycentric coord p
// and write that color in a texture image at position tp[0],tp[1]
}
2008-06-20 17:11:30 +02:00
} ; // end class TrivialSampler
2008-05-27 23:38:37 +02:00
template < class MetroMesh , class VertexSampler >
class SurfaceSampling
{
typedef typename MetroMesh : : CoordType CoordType ;
typedef typename MetroMesh : : ScalarType ScalarType ;
typedef typename MetroMesh : : VertexType VertexType ;
typedef typename MetroMesh : : VertexPointer VertexPointer ;
typedef typename MetroMesh : : VertexIterator VertexIterator ;
2008-06-20 17:11:30 +02:00
typedef typename MetroMesh : : FacePointer FacePointer ;
2008-05-27 23:38:37 +02:00
typedef typename MetroMesh : : FaceIterator FaceIterator ;
typedef typename MetroMesh : : FaceType FaceType ;
typedef typename MetroMesh : : FaceContainer FaceContainer ;
public :
static
void AllVertex ( MetroMesh & m , VertexSampler & ps )
{
VertexIterator vi ;
for ( vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi )
if ( ! ( * vi ) . IsD ( ) )
{
ps . AddVert ( * vi ) ;
}
}
2008-06-04 15:29:04 +02:00
/// Sample the vertices in a weighted way. Each vertex has a probabiltiy of being chosen
/// that is proportional to its quality.
/// It assumes that you are asking a number of vertices smaller than nv;
/// Algorithm:
/// 1) normalize quality so that sum q == 1;
/// 2) shuffle vertices.
/// 3) for each vertices choose it if rand > thr;
static void VertexWeighted ( MetroMesh & m , VertexSampler & ps , int sampleNum )
2008-05-27 23:38:37 +02:00
{
2008-06-04 15:29:04 +02:00
ScalarType qSum = 0 ;
VertexIterator vi ;
for ( vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi )
if ( ! ( * vi ) . IsD ( ) )
qSum + = ( * vi ) . Q ( ) ;
ScalarType samplePerUnit = sampleNum / qSum ;
ScalarType floatSampleNum = 0 ;
2008-05-27 23:38:37 +02:00
std : : vector < VertexPointer > vertVec ;
2008-11-01 08:22:29 +01:00
FillAndShuffleVertexPointerVector ( m , vertVec ) ;
2008-06-04 15:29:04 +02:00
std : : vector < bool > vertUsed ( m . vn , false ) ;
int i = 0 ; int cnt = 0 ;
while ( cnt < sampleNum )
{
if ( vertUsed [ i ] )
{
floatSampleNum + = vertVec [ i ] - > Q ( ) * samplePerUnit ;
int vertSampleNum = ( int ) floatSampleNum ;
floatSampleNum - = ( float ) vertSampleNum ;
// for every sample p_i in T...
if ( vertSampleNum > 1 )
{
ps . AddVert ( * vertVec [ i ] ) ;
cnt + + ;
vertUsed [ i ] = true ;
}
}
i = ( i + 1 ) % m . vn ;
}
}
/// Sample the vertices in a uniform way. Each vertex has a probabiltiy of being chosen
/// that is proportional to the area it represent.
static void VertexAreaUniform ( MetroMesh & m , VertexSampler & ps , int sampleNum )
{
VertexIterator vi ;
for ( vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi )
if ( ! ( * vi ) . IsD ( ) )
( * vi ) . Q ( ) = 0 ;
FaceIterator fi ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; + + fi )
if ( ! ( * fi ) . IsD ( ) )
{
ScalarType areaThird = DoubleArea ( * fi ) / 6.0 ;
( * fi ) . V ( 0 ) . Q ( ) + = areaThird ;
( * fi ) . V ( 1 ) . Q ( ) + = areaThird ;
( * fi ) . V ( 2 ) . Q ( ) + = areaThird ;
}
2008-05-27 23:38:37 +02:00
2008-06-04 15:29:04 +02:00
VertexWeighted ( m , ps , sampleNum ) ;
}
2008-11-01 08:22:29 +01:00
static void FillAndShuffleFacePointerVector ( MetroMesh & m , std : : vector < FacePointer > & faceVec )
{
FaceIterator fi ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; + + fi )
if ( ! ( * fi ) . IsD ( ) ) faceVec . push_back ( & * fi ) ;
assert ( ( int ) faceVec . size ( ) = = m . fn ) ;
std : : random_shuffle ( faceVec . begin ( ) , faceVec . end ( ) ) ;
}
static void FillAndShuffleVertexPointerVector ( MetroMesh & m , std : : vector < VertexPointer > & vertVec )
2008-06-04 15:29:04 +02:00
{
2008-05-27 23:38:37 +02:00
VertexIterator vi ;
for ( vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi )
if ( ! ( * vi ) . IsD ( ) ) vertVec . push_back ( & * vi ) ;
2008-07-01 11:34:43 +02:00
assert ( ( int ) vertVec . size ( ) = = m . vn ) ;
2008-05-27 23:38:37 +02:00
std : : random_shuffle ( vertVec . begin ( ) , vertVec . end ( ) ) ;
2008-06-04 15:29:04 +02:00
}
/// Sample the vertices in a uniform way. Each vertex has the same probabiltiy of being chosen.
static void VertexUniform ( MetroMesh & m , VertexSampler & ps , int sampleNum )
{
if ( sampleNum > = m . vn )
{
AllVertex ( m , ps ) ;
return ;
}
std : : vector < VertexPointer > vertVec ;
2008-11-01 08:22:29 +01:00
FillAndShuffleVertexPointerVector ( m , vertVec ) ;
2008-05-27 23:38:37 +02:00
for ( int i = 0 ; i < sampleNum ; + + i )
ps . AddVert ( * vertVec [ i ] ) ;
}
static void AllFace ( MetroMesh & m , VertexSampler & ps )
{
FaceIterator fi ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; + + fi )
if ( ! ( * fi ) . IsD ( ) )
{
ps . AddFace ( * fi , Barycenter ( * fi ) ) ;
}
}
static void AllEdge ( MetroMesh & m , VertexSampler & ps )
{
// Edge sampling.
typedef typename UpdateTopology < MetroMesh > : : PEdge SimpleEdge ;
std : : vector < SimpleEdge > Edges ;
UpdateTopology < MetroMesh > : : FillEdgeVector ( m , Edges ) ;
sort ( Edges . begin ( ) , Edges . end ( ) ) ; // Lo ordino per vertici
typename std : : vector < SimpleEdge > : : iterator newEnd = unique ( Edges . begin ( ) , Edges . end ( ) ) ;
typename std : : vector < SimpleEdge > : : iterator ei ;
2008-07-03 23:39:37 +02:00
//qDebug("Edges %i (unique %i) ",(int)Edges.size(), (int)(newEnd-Edges.begin()) );
2008-05-27 23:38:37 +02:00
Edges . resize ( newEnd - Edges . begin ( ) ) ;
for ( ei = Edges . begin ( ) ; ei ! = Edges . end ( ) ; + + ei )
{
Point3f interp ( 0 , 0 , 0 ) ;
interp [ ( * ei ) . z ] = .5 ;
interp [ ( ( * ei ) . z + 1 ) % 3 ] = .5 ;
ps . AddFace ( * ( * ei ) . f , interp ) ;
}
}
/*
// sample edges.
typename std : : vector < pvv > : : iterator ei ;
double n_samples_per_length_unit ;
double n_samples_decimal = 0.0 ;
int cnt = 0 ;
if ( Flags & SamplingFlags : : FACE_SAMPLING ) n_samples_per_length_unit = sqrt ( ( double ) n_samples_per_area_unit ) ;
else n_samples_per_length_unit = n_samples_per_area_unit ;
for ( ei = Edges . begin ( ) ; ei ! = Edges . end ( ) ; + + ei )
{
n_samples_decimal + = Distance ( ( * ei ) . first - > cP ( ) , ( * ei ) . second - > cP ( ) ) * n_samples_per_length_unit ;
n_samples = ( int ) n_samples_decimal ;
SampleEdge ( ( * ei ) . first - > cP ( ) , ( * ei ) . second - > cP ( ) , ( int ) n_samples ) ;
n_samples_decimal - = ( double ) n_samples ;
}
*/
2008-06-20 17:11:30 +02:00
// Generate the baricentric coords of a random point over a single face, with a uniform distribution over the triangle.
// It uses the parallelgoram folding trick.
2008-05-27 23:38:37 +02:00
static CoordType RandomBaricentric ( )
{
CoordType interp ;
interp [ 1 ] = ( double ) rand ( ) / ( double ) RAND_MAX ;
interp [ 2 ] = ( double ) rand ( ) / ( double ) RAND_MAX ;
if ( interp [ 1 ] + interp [ 2 ] > 1.0 )
{
interp [ 1 ] = 1.0 - interp [ 1 ] ;
interp [ 2 ] = 1.0 - interp [ 2 ] ;
}
assert ( interp [ 1 ] + interp [ 2 ] < = 1.0 ) ;
interp [ 0 ] = 1.0 - ( interp [ 1 ] + interp [ 2 ] ) ;
return interp ;
}
2008-11-01 08:22:29 +01:00
static void StratifiedMontecarlo ( MetroMesh & m , VertexSampler & ps , int sampleNum )
2008-05-27 23:38:37 +02:00
{
ScalarType area = Stat < MetroMesh > : : ComputeMeshArea ( m ) ;
ScalarType samplePerAreaUnit = sampleNum / area ;
2008-07-03 23:39:37 +02:00
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
2008-05-27 23:38:37 +02:00
// Montecarlo sampling.
double floatSampleNum = 0.0 ;
FaceIterator fi ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; fi + + )
if ( ! ( * fi ) . IsD ( ) )
{
// compute # samples in the current face (taking into account of the remainders)
floatSampleNum + = 0.5 * DoubleArea ( * fi ) * samplePerAreaUnit ;
int faceSampleNum = ( int ) floatSampleNum ;
// for every sample p_i in T...
for ( int i = 0 ; i < faceSampleNum ; i + + )
ps . AddFace ( * fi , RandomBaricentric ( ) ) ;
floatSampleNum - = ( double ) faceSampleNum ;
}
}
2008-11-01 08:22:29 +01:00
static void Montecarlo ( MetroMesh & m , VertexSampler & ps , int sampleNum )
{
typedef std : : pair < ScalarType , FacePointer > IntervalType ;
std : : vector < IntervalType > intervals ( m . fn + 1 ) ;
FaceIterator fi ;
int i = 0 ;
intervals [ i ] = std : : make_pair ( 0 , FacePointer ( 0 ) ) ;
// First loop: build a sequence of consective segments proportional to the triangle areas.
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; fi + + )
if ( ! ( * fi ) . IsD ( ) )
{
intervals [ i + 1 ] = std : : make_pair ( intervals [ i ] . first + 0.5 * DoubleArea ( * fi ) , & * fi ) ;
+ + i ;
}
ScalarType meshArea = intervals . back ( ) . first ;
for ( i = 0 ; i < sampleNum ; + + i )
{
ScalarType val = meshArea * ( double ) rand ( ) / ( double ) RAND_MAX ;
// lower_bound returns the furthermost iterator i in [first, last) such that, for every iterator j in [first, i), *j < value.
// E.g. An iterator pointing to the first element "not less than" val, or end() if every element is less than val.
typename std : : vector < IntervalType > : : iterator it = lower_bound ( intervals . begin ( ) , intervals . end ( ) , make_pair ( val , FacePointer ( 0 ) ) ) ;
assert ( it ! = intervals . end ( ) ) ;
assert ( it ! = intervals . begin ( ) ) ;
assert ( ( * ( it - 1 ) ) . first < val ) ;
assert ( ( * ( it ) ) . first > = val ) ;
ps . AddFace ( * ( * it ) . second , RandomBaricentric ( ) ) ;
}
}
2008-05-29 08:17:09 +02:00
static ScalarType WeightedArea ( FaceType f )
{
ScalarType averageQ = ( f . V ( 0 ) - > Q ( ) + f . V ( 1 ) - > Q ( ) + f . V ( 2 ) - > Q ( ) ) / 3.0 ;
return DoubleArea ( f ) * averageQ / 2.0 ;
}
/// Compute a sampling of the surface that is weighted by the quality
/// the area of each face is multiplied by the average of the quality of the vertices.
/// So the a face with a zero quality on all its vertices is never sampled and a face with average quality 2 get twice the samples of a face with the same area but with an average quality of 1;
static void WeightedMontecarlo ( MetroMesh & m , VertexSampler & ps , int sampleNum )
{
assert ( tri : : HasPerVertexQuality ( m ) ) ;
ScalarType weightedArea = 0 ;
FaceIterator fi ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; + + fi )
if ( ! ( * fi ) . IsD ( ) )
weightedArea + = WeightedArea ( * fi ) ;
ScalarType samplePerAreaUnit = sampleNum / weightedArea ;
2008-07-03 23:39:37 +02:00
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
2008-05-29 08:17:09 +02:00
// Montecarlo sampling.
double floatSampleNum = 0.0 ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; fi + + )
if ( ! ( * fi ) . IsD ( ) )
{
// compute # samples in the current face (taking into account of the remainders)
floatSampleNum + = WeightedArea ( * fi ) * samplePerAreaUnit ;
int faceSampleNum = ( int ) floatSampleNum ;
// for every sample p_i in T...
for ( int i = 0 ; i < faceSampleNum ; i + + )
ps . AddFace ( * fi , RandomBaricentric ( ) ) ;
floatSampleNum - = ( double ) faceSampleNum ;
}
}
2008-05-27 23:38:37 +02:00
2008-06-20 17:11:30 +02:00
// Subdivision sampling of a single face.
// return number of added samples
2008-05-27 23:38:37 +02:00
2008-11-01 08:22:29 +01:00
static int SingleFaceSubdivision ( int sampleNum , const CoordType & v0 , const CoordType & v1 , const CoordType & v2 , VertexSampler & ps , FacePointer fp , bool randSample )
2008-05-27 23:38:37 +02:00
{
// recursive face subdivision.
2008-11-01 08:22:29 +01:00
if ( sampleNum = = 1 )
2008-05-27 23:38:37 +02:00
{
// ground case.
2008-11-01 08:22:29 +01:00
CoordType SamplePoint ;
if ( randSample )
{
CoordType rb = RandomBaricentric ( ) ;
SamplePoint = v0 * rb [ 0 ] + v1 * rb [ 1 ] + v2 * rb [ 2 ] ;
}
else SamplePoint = ( ( v0 + v1 + v2 ) / 3.0f ) ;
CoordType SampleBary ;
InterpolationParameters ( * fp , SamplePoint , SampleBary [ 0 ] , SampleBary [ 1 ] , SampleBary [ 2 ] ) ;
ps . AddFace ( * fp , SampleBary ) ;
return 1 ;
2008-05-27 23:38:37 +02:00
}
2008-11-01 08:22:29 +01:00
int s0 = sampleNum / 2 ;
int s1 = sampleNum - s0 ;
assert ( s0 > 0 ) ;
assert ( s1 > 0 ) ;
ScalarType w0 = ScalarType ( s1 ) / ScalarType ( sampleNum ) ;
ScalarType w1 = 1.0 - w0 ;
2008-05-27 23:38:37 +02:00
// compute the longest edge.
double maxd01 = SquaredDistance ( v0 , v1 ) ;
double maxd12 = SquaredDistance ( v1 , v2 ) ;
double maxd20 = SquaredDistance ( v2 , v0 ) ;
int res ;
if ( maxd01 > maxd12 )
if ( maxd01 > maxd20 ) res = 0 ;
else res = 2 ;
else
if ( maxd12 > maxd20 ) res = 1 ;
else res = 2 ;
2008-06-20 17:11:30 +02:00
int faceSampleNum = 0 ;
// break the input triangle along the midpoint of the longest edge.
CoordType pp ;
2008-05-27 23:38:37 +02:00
switch ( res )
{
2008-11-01 08:22:29 +01:00
case 0 : pp = v0 * w0 + v1 * w1 ;
faceSampleNum + = SingleFaceSubdivision ( s0 , v0 , pp , v2 , ps , fp , randSample ) ;
faceSampleNum + = SingleFaceSubdivision ( s1 , pp , v1 , v2 , ps , fp , randSample ) ;
2008-05-27 23:38:37 +02:00
break ;
2008-11-01 08:22:29 +01:00
case 1 : pp = v1 * w0 + v2 * w1 ;
faceSampleNum + = SingleFaceSubdivision ( s0 , v0 , v1 , pp , ps , fp , randSample ) ;
faceSampleNum + = SingleFaceSubdivision ( s1 , v0 , pp , v2 , ps , fp , randSample ) ;
2008-05-27 23:38:37 +02:00
break ;
2008-11-01 08:22:29 +01:00
case 2 : pp = v0 * w0 + v2 * w1 ;
faceSampleNum + = SingleFaceSubdivision ( s0 , v0 , v1 , pp , ps , fp , randSample ) ;
faceSampleNum + = SingleFaceSubdivision ( s1 , pp , v1 , v2 , ps , fp , randSample ) ;
2008-05-27 23:38:37 +02:00
break ;
}
2008-06-20 17:11:30 +02:00
return faceSampleNum ;
2008-05-27 23:38:37 +02:00
}
2008-06-20 17:11:30 +02:00
/// Compute a sampling of the surface where the points are regularly scattered over the face surface using a recursive longest-edge subdivision rule.
2008-11-01 08:22:29 +01:00
static void FaceSubdivision ( MetroMesh & m , VertexSampler & ps , int sampleNum , bool randSample )
2008-05-27 23:38:37 +02:00
{
2008-06-20 17:11:30 +02:00
ScalarType area = Stat < MetroMesh > : : ComputeMeshArea ( m ) ;
ScalarType samplePerAreaUnit = sampleNum / area ;
2008-07-03 23:39:37 +02:00
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
2008-11-01 08:22:29 +01:00
std : : vector < FacePointer > faceVec ;
FillAndShuffleFacePointerVector ( m , faceVec ) ;
2008-05-27 23:38:37 +02:00
2008-06-20 17:11:30 +02:00
double floatSampleNum = 0.0 ;
int faceSampleNum ;
// Subdivision sampling.
2008-11-01 08:22:29 +01:00
typename std : : vector < FacePointer > : : iterator fi ;
for ( fi = faceVec . begin ( ) ; fi ! = faceVec . end ( ) ; fi + + )
2008-05-27 23:38:37 +02:00
{
// compute # samples in the current face.
2008-11-01 08:22:29 +01:00
floatSampleNum + = 0.5 * DoubleArea ( * * fi ) * samplePerAreaUnit ;
2008-06-20 17:11:30 +02:00
faceSampleNum = ( int ) floatSampleNum ;
if ( faceSampleNum > 0 )
2008-11-01 08:22:29 +01:00
faceSampleNum = SingleFaceSubdivision ( faceSampleNum , ( * * fi ) . V ( 0 ) - > cP ( ) , ( * * fi ) . V ( 1 ) - > cP ( ) , ( * * fi ) . V ( 2 ) - > cP ( ) , ps , * fi , randSample ) ;
2008-06-20 17:11:30 +02:00
floatSampleNum - = ( double ) faceSampleNum ;
2008-05-27 23:38:37 +02:00
}
}
// Similar Triangles sampling.
2008-06-20 17:11:30 +02:00
// Skip vertex and edges
// Sample per edges includes vertexes, so here we should expect n_samples_per_edge >=4
static int SingleFaceSimilar ( FacePointer fp , VertexSampler & ps , int n_samples_per_edge )
2008-05-27 23:38:37 +02:00
{
2008-06-20 17:11:30 +02:00
int n_samples = 0 ;
2008-05-27 23:38:37 +02:00
int i , j ;
2008-06-20 17:11:30 +02:00
float segmentNum = n_samples_per_edge - 1 ;
float segmentLen = 1.0 / segmentNum ;
// face sampling.
2008-05-27 23:38:37 +02:00
for ( i = 1 ; i < n_samples_per_edge - 1 ; i + + )
for ( j = 1 ; j < n_samples_per_edge - 1 - i ; j + + )
{
2008-06-20 17:11:30 +02:00
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
CoordType sampleBary ( i * segmentLen , j * segmentLen , 1.0 - ( i * segmentLen + j * segmentLen ) ) ;
2008-05-27 23:38:37 +02:00
n_samples + + ;
2008-06-20 17:11:30 +02:00
ps . AddFace ( * fp , sampleBary ) ;
2008-05-27 23:38:37 +02:00
}
2008-06-20 17:11:30 +02:00
return n_samples ;
2008-05-27 23:38:37 +02:00
}
2008-06-20 17:11:30 +02:00
/// Similar sampling. Each triangle is subdivided into similar triangles following a generalization of the classical 1-to-4 splitting rule of triangles.
/// According to the level of subdivision <k> you get 1, 4 , 9, 16 , <k^2> triangles.
/// Of these triangles we consider only internal vertices. (to avoid multiple sampling of edges and vertices).
/// Therefore the number of internal points is ((k-3)*(k-2))/2. where k is the number of point on an edge (vertex included)
// e.g. for a k=4 you get (1*2)/2 == 1 e.g. a single point, etc.
/// So if you want N samples in a triangle i have to solve k^2 -5k +6 - 2N = 0
// 5 + sqrt( 1 + 8N )
// k = -------------------
// 2
//template <class MetroMesh>
//void Sampling<MetroMesh>::SimilarFaceSampling()
static void FaceSimilar ( MetroMesh & m , VertexSampler & ps , int sampleNum )
2008-05-27 23:38:37 +02:00
{
2008-06-20 17:11:30 +02:00
ScalarType area = Stat < MetroMesh > : : ComputeMeshArea ( m ) ;
ScalarType samplePerAreaUnit = sampleNum / area ;
2008-07-03 23:39:37 +02:00
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
2008-06-20 17:11:30 +02:00
// Similar Triangles sampling.
2008-07-01 11:34:43 +02:00
int n_samples_per_edge ;
2008-05-27 23:38:37 +02:00
double n_samples_decimal = 0.0 ;
FaceIterator fi ;
printf ( " Similar Triangles face sampling \n " ) ;
2008-06-20 17:11:30 +02:00
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; fi + + )
2008-05-27 23:38:37 +02:00
{
// compute # samples in the current face.
2008-06-20 17:11:30 +02:00
n_samples_decimal + = 0.5 * DoubleArea ( * fi ) * samplePerAreaUnit ;
int n_samples = ( int ) n_samples_decimal ;
2008-05-27 23:38:37 +02:00
if ( n_samples )
{
// face sampling.
n_samples_per_edge = ( int ) ( ( sqrt ( 1.0 + 8.0 * ( double ) n_samples ) + 5.0 ) / 2.0 ) ;
2008-08-14 16:19:29 +02:00
//n_samples = 0;
2008-06-20 17:11:30 +02:00
//SingleFaceSimilar((*fi).V(0)->cP(), (*fi).V(1)->cP(), (*fi).V(2)->cP(), n_samples_per_edge);
2008-08-14 16:19:29 +02:00
n_samples = SingleFaceSimilar ( & * fi , ps , n_samples_per_edge ) ;
2008-05-27 23:38:37 +02:00
}
n_samples_decimal - = ( double ) n_samples ;
}
}
2008-06-20 17:11:30 +02:00
// Rasterization fuction
// Take a triangle
// T deve essere una classe funzionale che ha l'operatore ()
// con due parametri x,y di tipo S esempio:
// class Foo { public void operator()(int x, int y ) { ??? } };
2008-06-21 01:33:24 +02:00
static void SingleFaceRaster ( FaceType & f , VertexSampler & ps , const Point2 < ScalarType > & v0 , const Point2 < ScalarType > & v1 , const Point2 < ScalarType > & v2 )
2008-06-20 17:11:30 +02:00
{
2008-06-21 01:33:24 +02:00
typedef ScalarType S ;
2008-06-20 17:11:30 +02:00
// Calcolo bounding box
Box2i bbox ;
if ( v0 [ 0 ] < v1 [ 0 ] ) { bbox . min [ 0 ] = v0 [ 0 ] ; bbox . max [ 0 ] = v1 [ 0 ] ; }
else { bbox . min [ 0 ] = v1 [ 0 ] ; bbox . max [ 0 ] = v0 [ 0 ] ; }
if ( v0 [ 1 ] < v1 [ 1 ] ) { bbox . min [ 1 ] = v0 [ 1 ] ; bbox . max [ 1 ] = v1 [ 1 ] ; }
else { bbox . min [ 1 ] = v1 [ 1 ] ; bbox . max [ 1 ] = v0 [ 1 ] ; }
if ( bbox . min [ 0 ] > v2 [ 0 ] ) bbox . min [ 0 ] = v2 [ 0 ] ;
else if ( bbox . max [ 0 ] < v2 [ 0 ] ) bbox . max [ 0 ] = v2 [ 0 ] ;
if ( bbox . min [ 1 ] > v2 [ 1 ] ) bbox . min [ 1 ] = v2 [ 1 ] ;
else if ( bbox . max [ 1 ] < v2 [ 1 ] ) bbox . max [ 1 ] = v2 [ 1 ] ;
// Calcolo versori degli spigoli
Point2 < S > d10 = v1 - v0 ;
Point2 < S > d21 = v2 - v1 ;
Point2 < S > d02 = v0 - v2 ;
// Preparazione prodotti scalari
S b0 = ( bbox . min [ 0 ] - v0 [ 0 ] ) * d10 [ 1 ] - ( bbox . min [ 1 ] - v0 [ 1 ] ) * d10 [ 0 ] ;
S b1 = ( bbox . min [ 0 ] - v1 [ 0 ] ) * d21 [ 1 ] - ( bbox . min [ 1 ] - v1 [ 1 ] ) * d21 [ 0 ] ;
S b2 = ( bbox . min [ 0 ] - v2 [ 0 ] ) * d02 [ 1 ] - ( bbox . min [ 1 ] - v2 [ 1 ] ) * d02 [ 0 ] ;
// Preparazione degli steps
S db0 = d10 [ 1 ] ;
S db1 = d21 [ 1 ] ;
S db2 = d02 [ 1 ] ;
// Preparazione segni
S dn0 = - d10 [ 0 ] ;
S dn1 = - d21 [ 0 ] ;
S dn2 = - d02 [ 0 ] ;
// Rasterizzazione
double de = v0 [ 0 ] * v1 [ 1 ] - v0 [ 0 ] * v2 [ 1 ] - v1 [ 0 ] * v0 [ 1 ] + v1 [ 0 ] * v2 [ 1 ] - v2 [ 0 ] * v1 [ 1 ] + v2 [ 0 ] * v0 [ 1 ] ;
for ( int x = bbox . min [ 0 ] ; x < = bbox . max [ 0 ] ; + + x )
{
bool in = false ;
S n0 = b0 ;
S n1 = b1 ;
S n2 = b2 ;
for ( int y = bbox . min [ 1 ] ; y < = bbox . max [ 1 ] ; + + y )
{
if ( ( n0 > = 0 & & n1 > = 0 & & n2 > = 0 ) | | ( n0 < = 0 & & n1 < = 0 & & n2 < = 0 ) )
{
2008-06-21 01:33:24 +02:00
CoordType baryCoord ;
baryCoord [ 0 ] = double ( - y * v1 [ 0 ] + v2 [ 0 ] * y + v1 [ 1 ] * x - v2 [ 0 ] * v1 [ 1 ] + v1 [ 0 ] * v2 [ 1 ] - x * v2 [ 1 ] ) / de ;
baryCoord [ 1 ] = - double ( x * v0 [ 1 ] - x * v2 [ 1 ] - v0 [ 0 ] * y + v0 [ 0 ] * v2 [ 1 ] - v2 [ 0 ] * v0 [ 1 ] + v2 [ 0 ] * y ) / de ;
baryCoord [ 2 ] = 1 - baryCoord [ 0 ] - baryCoord [ 1 ] ;
2008-06-20 17:11:30 +02:00
2008-06-21 01:33:24 +02:00
ps . AddTextureSample ( f , baryCoord , Point2i ( x , y ) ) ;
2008-06-20 17:11:30 +02:00
in = true ;
} else if ( in ) break ;
n0 + = dn0 ;
n1 + = dn1 ;
n2 + = dn2 ;
}
b0 + = db0 ;
b1 + = db1 ;
b2 + = db2 ;
}
2008-05-27 23:38:37 +02:00
}
2008-06-20 17:11:30 +02:00
2008-06-21 01:33:24 +02:00
//template <class MetroMesh>
//void Sampling<MetroMesh>::SimilarFaceSampling()
static void Texture ( MetroMesh & m , VertexSampler & ps , int textureSize )
{
FaceIterator fi ;
printf ( " Similar Triangles face sampling \n " ) ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; fi + + )
{
Point2f ti [ 3 ] ;
for ( int i = 0 ; i < 3 ; + + i )
ti [ i ] = Point2f ( ( * fi ) . WT ( i ) . U ( ) * textureSize , ( * fi ) . WT ( i ) . V ( ) * textureSize ) ;
SingleFaceRaster ( * fi , ps , ti [ 0 ] , ti [ 1 ] , ti [ 2 ] ) ;
}
}
} ; // end class
2008-06-20 17:11:30 +02:00
} // end namespace tri
} // end namespace vcg
2008-05-27 23:38:37 +02:00
# endif