vcglib/vcg/math/matrix33.h

299 lines
8.5 KiB
C
Raw Normal View History

2004-05-28 15:09:05 +02:00
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
2004-05-28 15:09:05 +02:00
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_USE_EIGEN
#include "deprecated_matrix33.h"
#else
2004-05-28 15:09:05 +02:00
#ifndef __VCGLIB_MATRIX33_H
#define __VCGLIB_MATRIX33_H
#include "eigen.h"
#include "matrix44.h"
2004-05-28 15:09:05 +02:00
namespace vcg{
template<class Scalar> class Matrix33;
}
2004-05-28 15:09:05 +02:00
namespace Eigen{
template<typename Scalar>
struct ei_traits<vcg::Matrix33<Scalar> > : ei_traits<Eigen::Matrix<Scalar,3,3,RowMajor> > {};
template<typename XprType> struct ei_to_vcgtype<XprType,3,3,RowMajor,3,3>
{ typedef vcg::Matrix33<typename XprType::Scalar> type; };
}
namespace vcg {
/** \deprecated use Matrix<Scalar,3,3>
@name Matrix33
2004-05-28 15:09:05 +02:00
Class Matrix33.
This is the class for definition of a matrix 3x3.
2004-05-28 15:09:05 +02:00
@param S (Templete Parameter) Specifies the ScalarType field.
*/
template<class _Scalar>
class Matrix33 : public Eigen::Matrix<_Scalar,3,3,Eigen::RowMajor> // FIXME col or row major ?
2004-05-28 15:09:05 +02:00
{
typedef Eigen::Matrix<_Scalar,3,3,Eigen::RowMajor> _Base;
public:
using _Base::coeff;
using _Base::coeffRef;
using _Base::setZero;
2005-09-29 11:53:58 +02:00
_EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix33,_Base);
typedef _Scalar ScalarType;
2004-05-28 15:09:05 +02:00
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Matrix33)
/// Default constructor
inline Matrix33() : Base() {}
2004-05-28 15:09:05 +02:00
/// Copy constructor
Matrix33(const Matrix33& m ) : Base(m) {}
/// create from a \b row-major array
Matrix33(const Scalar * v ) : Base(Eigen::Map<Eigen::Matrix<Scalar,3,3,Eigen::RowMajor> >(v)) {}
/// create from Matrix44 excluding row and column k
Matrix33(const Matrix44<Scalar> & m, const int & k) : Base(m.minor(k,k)) {}
template<typename OtherDerived>
Matrix33(const Eigen::MatrixBase<OtherDerived>& other) : Base(other) {}
/*! \deprecated use *this.row(i) */
inline typename Base::RowXpr operator[](const unsigned int i)
{ return Base::row(i); }
2004-05-28 15:09:05 +02:00
/*! \deprecated use *this.row(i) */
inline const typename Base::RowXpr operator[](const unsigned int i) const
{ return Base::row(i); }
2004-05-28 15:09:05 +02:00
/** \deprecated */
Matrix33 & SetRotateRad(Scalar angle, const Point3<Scalar> & axis )
2004-05-28 15:09:05 +02:00
{
*this = Eigen::AngleAxis<Scalar>(angle,axis).toRotationMatrix();
return (*this);
2004-05-28 15:09:05 +02:00
}
/** \deprecated */
Matrix33 & SetRotateDeg(Scalar angle, const Point3<Scalar> & axis ){
return SetRotateRad(math::ToRad(angle),axis);
}
// Warning, this Inversion code can be HIGHLY NUMERICALLY UNSTABLE!
// In most case you are advised to use the Invert() method based on SVD decomposition.
/** \deprecated */
Matrix33 & FastInvert() { return *this = Base::inverse(); }
void show(FILE * fp)
2004-05-28 15:09:05 +02:00
{
for(int i=0;i<3;++i)
printf("| %g \t%g \t%g |\n",coeff(i,0),coeff(i,1),coeff(i,2));
2004-05-28 15:09:05 +02:00
}
/** \deprecated use a * b.transpose()
compute the matrix generated by the product of a * b^T
*/
// hm.... this is the outer product
void ExternalProduct(const Point3<Scalar> &a, const Point3<Scalar> &b) { *this = a * b.transpose(); }
2004-05-28 15:09:05 +02:00
/** Compute the Frobenius Norm of the Matrix */
Scalar Norm() { return Base::cwise().abs2().sum(); }
/** Computes the covariance matrix of a set of 3d points. Returns the barycenter.
*/
// FIXME should be outside Matrix
/**
It computes the cross covariance matrix of two set of 3d points P and X;
it returns also the barycenters of P and X.
fonte:
2004-05-28 15:09:05 +02:00
Besl, McKay
A method for registration o f 3d Shapes
IEEE TPAMI Vol 14, No 2 1992
2004-05-28 15:09:05 +02:00
*/
// FIXME should be outside Matrix
template <class STLPOINTCONTAINER >
void CrossCovariance(const STLPOINTCONTAINER &P, const STLPOINTCONTAINER &X,
Point3<Scalar> &bp, Point3<Scalar> &bx)
{
setZero();
assert(P.size()==X.size());
bx.setZero();
bp.setZero();
Matrix33<Scalar> tmp;
typename std::vector <Point3<Scalar> >::const_iterator pi,xi;
for(pi=P.begin(),xi=X.begin();pi!=P.end();++pi,++xi){
bp+=*pi;
bx+=*xi;
tmp.ExternalProduct(*pi,*xi);
(*this)+=tmp;
}
bp/=P.size();
bx/=X.size();
(*this)/=P.size();
tmp.ExternalProduct(bp,bx);
(*this)-=tmp;
}
template <class STLPOINTCONTAINER, class STLREALCONTAINER>
void WeightedCrossCovariance(const STLREALCONTAINER & weights,
const STLPOINTCONTAINER &P,
const STLPOINTCONTAINER &X,
Point3<Scalar> &bp,
Point3<Scalar> &bx)
{
setZero();
assert(P.size()==X.size());
bx.SetZero();
bp.SetZero();
Matrix33<Scalar> tmp;
typename std::vector <Point3<Scalar> >::const_iterator pi,xi;
typename STLREALCONTAINER::const_iterator pw;
for(pi=P.begin(),xi=X.begin();pi!=P.end();++pi,++xi){
bp+=(*pi);
bx+=(*xi);
}
bp/=P.size();
bx/=X.size();
2004-05-28 15:09:05 +02:00
for(pi=P.begin(),xi=X.begin(),pw = weights.begin();pi!=P.end();++pi,++xi,++pw){
tmp.ExternalProduct(((*pi)-(bp)),((*xi)-(bp)));
2004-05-28 15:09:05 +02:00
(*this)+=tmp*(*pw);
}
2004-05-28 15:09:05 +02:00
}
};
2005-09-29 11:53:58 +02:00
template <class S>
void Invert(Matrix33<S> &m) { m = m.lu().inverse(); }
2005-09-29 11:53:58 +02:00
template <class S>
Matrix33<S> Inverse(const Matrix33<S>&m) { return m.lu().inverse(); }
2004-05-28 15:09:05 +02:00
2007-04-08 01:06:47 +02:00
///given 2 vector centered into origin calculate the rotation matrix from first to the second
template <class S>
Matrix33<S> RotationMatrix(vcg::Point3<S> v0,vcg::Point3<S> v1,bool normalized=true)
{
typedef typename vcg::Point3<S> CoordType;
Matrix33<S> rotM;
const S epsilon=0.00001;
if (!normalized)
{
v0.Normalize();
v1.Normalize();
}
S dot=v0.dot(v1);
2007-04-08 01:06:47 +02:00
///control if there is no rotation
if (dot>((S)1-epsilon))
{
rotM.SetIdentity();
return rotM;
}
///find the axis of rotation
2007-04-08 01:06:47 +02:00
CoordType axis;
axis=v0^v1;
axis.Normalize();
2007-04-08 01:06:47 +02:00
///construct rotation matrix
S u=axis.X();
S v=axis.Y();
S w=axis.Z();
S phi=acos(dot);
S rcos = cos(phi);
S rsin = sin(phi);
2007-04-08 01:06:47 +02:00
rotM[0][0] = rcos + u*u*(1-rcos);
rotM[1][0] = w * rsin + v*u*(1-rcos);
rotM[2][0] = -v * rsin + w*u*(1-rcos);
rotM[0][1] = -w * rsin + u*v*(1-rcos);
rotM[1][1] = rcos + v*v*(1-rcos);
rotM[2][1] = u * rsin + w*v*(1-rcos);
rotM[0][2] = v * rsin + u*w*(1-rcos);
rotM[1][2] = -u * rsin + v*w*(1-rcos);
rotM[2][2] = rcos + w*w*(1-rcos);
return rotM;
}
///return the rotation matrix along axis
template <class S>
Matrix33<S> RotationMatrix(const vcg::Point3<S> &axis,
const float &angleRad)
{
vcg::Matrix44<S> matr44;
vcg::Matrix33<S> matr33;
matr44.SetRotate(angleRad,axis);
for (int i=0;i<3;i++)
for (int j=0;j<3;j++)
matr33[i][j]=matr44[i][j];
return matr33;
}
2007-04-08 01:06:47 +02:00
2008-01-03 18:40:17 +01:00
/// return a random rotation matrix, from the paper:
/// Fast Random Rotation Matrices, James Arvo
/// Graphics Gems III pp. 117-120
template <class S>
Matrix33<S> RandomRotation(){
S x1,x2,x3;
Matrix33<S> R,H,M,vv;
Point3<S> v;
R.SetIdentity();
H.SetIdentity();
x1 = rand()/S(RAND_MAX);
x2 = rand()/S(RAND_MAX);
x3 = rand()/S(RAND_MAX);
R[0][0] = cos(S(2)*M_PI*x1);
R[0][1] = sin(S(2)*M_PI*x1);
R[1][0] = - R[0][1];
R[1][1] = R[0][0];
v[0] = cos(2.0 * M_PI * x2)*sqrt(x3);
v[1] = sin(2.0 * M_PI * x2)*sqrt(x3);
v[2] = sqrt(1-x3);
vv.OuterProduct(v,v);
H -= vv*S(2);
M = H*R*S(-1);
return M;
}
///
2004-05-28 15:09:05 +02:00
typedef Matrix33<short> Matrix33s;
typedef Matrix33<int> Matrix33i;
2004-05-28 15:09:05 +02:00
typedef Matrix33<float> Matrix33f;
typedef Matrix33<double> Matrix33d;
} // end of namespace
#endif
#endif