vcglib/vcg/complex/trimesh/update/topology.h

445 lines
12 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.20 2008/04/04 10:27:34 cignoni
minor changes to the topology correctness checks
Revision 1.19 2007/05/29 00:07:06 ponchio
VFi++ -> ++VFi
Revision 1.18 2006/02/27 19:26:14 spinelli
minor bug in Face-Face topology loop fixed
Revision 1.17 2006/02/27 11:56:48 spinelli
minor bug in Face-Face topology loop fixed
Revision 1.16 2005/11/10 15:36:42 cignoni
Added clarifying comment in an assert
Revision 1.15 2004/10/20 07:33:10 cignoni
removed FaceBorderFlags (already present in update/flags.h)
Revision 1.14 2004/10/18 17:10:22 ganovelli
added ::FaceBorderFLags
Revision 1.13 2004/10/01 15:58:00 ponchio
Added include <vector>
Revision 1.12 2004/09/09 13:02:12 ponchio
Linux compatible path in #include
Revision 1.11 2004/08/07 16:18:20 pietroni
addet testFFTopology and testVFTopology functions used to test the rispective topology....
Revision 1.10 2004/07/15 11:35:08 ganovelli
Vfb to VFp
Revision 1.9 2004/07/15 00:13:39 cignoni
Better doxigen documentation
Revision 1.8 2004/06/02 16:42:44 ganovelli
typename for gcc compilation
Revision 1.7 2004/06/02 16:28:22 ganovelli
minor changes (swap =>> math::Swap)
Revision 1.6 2004/05/10 15:23:43 cignoni
Changed a FV -> VF in VertexFace topology computation
Revision 1.5 2004/05/06 15:24:38 pietroni
changed names to topology functions
Revision 1.4 2004/03/31 14:44:43 cignoni
Added Vertex-Face Topology
Revision 1.3 2004/03/12 15:22:19 cignoni
Written some documentation and added to the trimes doxygen module
Revision 1.2 2004/03/05 21:49:21 cignoni
First working version for face face
Revision 1.1 2004/03/04 00:53:24 cignoni
Initial commit
****************************************************************************/
#ifndef __VCG_TRI_UPDATE_TOPOLOGY
#define __VCG_TRI_UPDATE_TOPOLOGY
#include <algorithm>
#include <vector>
#include <vcg/simplex/face/pos.h>
namespace vcg {
namespace tri {
/** \addtogroup trimesh */
/*@{*/
/** Generation of per-vertex and per-face topological information.
**/
template <class UpdateMeshType>
class UpdateTopology
{
public:
typedef UpdateMeshType MeshType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
/// Auxiliairy data structure for computing face face adjacency information.
// It identifies and edge storing two vertex pointer and a face pointer where it belong.
class PEdge
{
public:
VertexPointer v[2]; // the two Vertex pointer are ordered!
FacePointer f; // the face where this edge belong
int z; // index in [0..2] of the edge of the face
PEdge() {}
void Set( FacePointer pf, const int nz )
{
assert(pf!=0);
assert(nz>=0);
assert(nz<3);
v[0] = pf->V(nz);
v[1] = pf->V((nz+1)%3);
assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes)
if( v[0] > v[1] ) math::Swap(v[0],v[1]);
f = pf;
z = nz;
}
inline bool operator < ( const PEdge & pe ) const
{
if( v[0]<pe.v[0] ) return true;
else if( v[0]>pe.v[0] ) return false;
else return v[1] < pe.v[1];
}
inline bool operator <= ( const PEdge & pe ) const
{
if( v[0]<pe.v[0] ) return true;
else if( v[0]>pe.v[0] ) return false;
else return v[1] <= pe.v[1];
}
inline bool operator > ( const PEdge & pe ) const
{
if( v[0]>pe.v[0] ) return true;
else if( v[0]<pe.v[0] ) return false;
else return v[1] > pe.v[1];
}
inline bool operator >= ( const PEdge & pe ) const
{
if( v[0]>pe.v[0] ) return true;
else if( v[0]<pe.v[0] ) return false;
else return v[1] >= pe.v[1];
}
inline bool operator == ( const PEdge & pe ) const
{
return v[0]==pe.v[0] && v[1]==pe.v[1];
}
inline bool operator != ( const PEdge & pe ) const
{
return v[0]!=pe.v[0] || v[1]!=pe.v[1];
}
};
/** Update the Face-Face topological relation by allowing to retrieve for each face what other faces shares their edges.
*/
static void FaceFace(MeshType &m)
{
if(!m.HasFFTopology()) return;
std::vector<PEdge> e;
FaceIterator pf;
typename std::vector<PEdge>::iterator p;
if( m.fn == 0 ) return;
e.resize(m.fn*3); // Alloco il vettore ausiliario
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<3;++j)
{
(*p).Set(&(*pf),j);
++p;
}
assert(p==e.end());
sort(e.begin(), e.end()); // Lo ordino per vertici
int ne = 0; // Numero di edge reali
typename std::vector<PEdge>::iterator pe,ps;
ps = e.begin();pe=e.begin();
//for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario
do
{
if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali
{
typename std::vector<PEdge>::iterator q,q_next;
for (q=ps;q<pe-1;++q) // Scansione facce associate
{
assert((*q).z>=0);
assert((*q).z< 3);
q_next = q;
++q_next;
assert((*q_next).z>=0);
assert((*q_next).z< 3);
(*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce
(*q).f->FFi(q->z) = (*q_next).z;
}
assert((*q).z>=0);
assert((*q).z< 3);
(*q).f->FFp((*q).z) = ps->f;
(*q).f->FFi((*q).z) = ps->z;
ps = pe;
++ne; // Aggiorno il numero di edge
}
if(pe==e.end()) break;
++pe;
} while(true);
}
/** Update the Vertex-Face topological relation by allowing to retrieve for each vertex the list of faces sharing this vertex..
*/
static void VertexFace(MeshType &m)
{
if(!m.HasVFTopology()) return;
VertexIterator vi;
FaceIterator fi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
{
(*vi).VFp() = 0;
(*vi).VFi() = 0;
}
for(fi=m.face.begin();fi!=m.face.end();++fi)
if( ! (*fi).IsD() )
{
for(int j=0;j<3;++j)
{
(*fi).VFp(j) = (*fi).V(j)->VFp();
(*fi).VFi(j) = (*fi).V(j)->VFi();
(*fi).V(j)->VFp() = &(*fi);
(*fi).V(j)->VFi() = j;
}
}
}
/// Auxiliairy data structure for computing face face adjacency information.
// It identifies and edge storing two vertex pointer and a face pointer where it belong.
class PEdgeTex
{
public:
typename FaceType::TexCoordType v[2]; // the two Vertex pointer are ordered!
FacePointer f; // the face where this edge belong
int z; // index in [0..2] of the edge of the face
PEdgeTex() {}
void Set( FacePointer pf, const int nz )
{
assert(pf!=0);
assert(nz>=0);
assert(nz<3);
v[0] = pf->WT(nz);
v[1] = pf->WT((nz+1)%3);
assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes)
if( v[1] < v[0] ) swap(v[0],v[1]);
f = pf;
z = nz;
}
inline bool operator < ( const PEdgeTex & pe ) const
{
if( v[0]<pe.v[0] ) return true;
else if( pe.v[0]<v[0] ) return false;
else return v[1] < pe.v[1];
}
inline bool operator == ( const PEdgeTex & pe ) const
{
return (v[0]==pe.v[0]) && (v[1]==pe.v[1]);
}
inline bool operator != ( const PEdgeTex & pe ) const
{
return (v[0]!=pe.v[0]) || (v[1]!=pe.v[1]);
}
};
/** Update the Face-Face topological relation by allowing to retrieve for each face what other faces shares their edges.
*/
static void FaceFaceFromTexCoord(MeshType &m)
{
// assert(HasFFTopology(m));
assert(HasPerWedgeTexCoord(m));
std::vector<PEdgeTex> e;
FaceIterator pf;
typename std::vector<PEdgeTex>::iterator p;
if( m.fn == 0 ) return;
e.resize(m.fn*3); // Alloco il vettore ausiliario
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<3;++j)
{
(*p).Set(&(*pf),j);
++p;
}
assert(p==e.end());
sort(e.begin(), e.end()); // Lo ordino per vertici
int ne = 0; // Numero di edge reali
typename std::vector<PEdgeTex>::iterator pe,ps;
ps = e.begin();pe=e.begin();
//for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario
do
{
if( pe==e.end() || (*pe) != (*ps) ) // Trovo blocco di edge uguali
{
typename std::vector<PEdgeTex>::iterator q,q_next;
for (q=ps;q<pe-1;++q) // Scansione facce associate
{
assert((*q).z>=0);
assert((*q).z< 3);
q_next = q;
++q_next;
assert((*q_next).z>=0);
assert((*q_next).z< 3);
(*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce
(*q).f->FFi(q->z) = (*q_next).z;
}
assert((*q).z>=0);
assert((*q).z< 3);
(*q).f->FFp((*q).z) = ps->f;
(*q).f->FFi((*q).z) = ps->z;
ps = pe;
++ne; // Aggiorno il numero di edge
}
if(pe==e.end()) break;
++pe;
} while(true);
}
///test correctness of VFtopology
static void TestVertexFace(MeshType &m)
{
if(!m.HasVFTopology()) return;
VertexIterator vi;
vcg::face::VFIterator<FaceType> VFi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
{
if (!vi->IsD())
if(vi->VFp()!=0) // unreferenced vertices MUST have VF == 0;
{
assert(vi->VFp() >= &*m.face.begin());
assert(vi->VFp() <= &m.face.back());
VFi.f=vi->VFp();
VFi.z=vi->VFi();
while (!VFi.End())
{
assert(!VFi.F()->IsD());
assert((VFi.F()->V(VFi.I()))==&(*vi));
++VFi;
}
}
}
}
///test correctness of FFtopology
static void TestFaceFace(MeshType &m)
{
if(!m.HasFFTopology()) return;
FaceIterator Fi;
for(Fi=m.face.begin();Fi!=m.face.end();++Fi)
{
if (!Fi->IsD())
{
for (int i=0;i<3;i++)
{
FaceType *f=Fi->FFp(i);
int e=Fi->FFi(i);
//invariant property of fftopology
assert(f->FFp(e)=&(*Fi));
// Test that the two faces shares the same edge
VertexPointer v0= Fi->V0(i);
VertexPointer v1= Fi->V1(i);
assert( (f->V0(e)==v0) || (f->V1(e)==v0) );
assert( (f->V0(e)==v1) || (f->V1(e)==v1) );
// Old unreadable test
// assert(((f->V(e) == Fi->V(i))&&(f->V((e+1)%3)==Fi->V((i+1)%3)))||
// ((f->V(e)==Fi->V((i+1)%3))&&(f->V((e+1)%3)==Fi->V(i))));
}
}
}
}
}; // end class
/*@}*/
} // End namespace
} // End namespace
#endif