vcglib/vcg/complex/trimesh/create/resampler.h

695 lines
19 KiB
C++

#ifndef __VCG_MESH_RESAMPLER
#define __VCG_MESH_RESAMPLER
#include <vcg/complex/trimesh/update/normal.h>
#include <vcg/complex/trimesh/update/bounding.h>
#include <vcg/complex/trimesh/update/edges.h>
#include <vcg/complex/trimesh/create/extended_marching_cubes.h>
#include <vcg/complex/trimesh/create/marching_cubes.h>
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/complex/trimesh/closest.h>
#include <vcg/space/box3.h>
//#include <volume_dataset.h>//debugghe
namespace vcg {
namespace trimesh {
class RES
{
public:
enum MarchMode {MMarchingCubes,MExtendedMarchingCubes} ;
};
/** \addtogroup trimesh */
/*@{*/
/*@{*/
/** Class Resampler.
This is class reasmpling a mesh using marching cubes methods
@param OLD_MESH_TYPE (Template Parameter) Specifies the type of mesh to be resampled
@param NEW_MESH_TYPE (Template Parameter) Specifies the type of output mesh.
@param MARCHING_ALGORITHM (Template Parameter) Specifies the type of marching cube algorithm (extended or not).
*/
template <class OLD_MESH_TYPE,class NEW_MESH_TYPE>
class Resampler:RES
{
typedef typename OLD_MESH_TYPE Old_Mesh;
typedef typename NEW_MESH_TYPE New_Mesh;
template <class OLD_MESH_TYPE,class NEW_MESH_TYPE>
class Walker
{
private:
typedef int VertexIndex;
typedef typename OLD_MESH_TYPE Old_Mesh;
typedef typename NEW_MESH_TYPE New_Mesh;
typedef typename New_Mesh::CoordType NewCoordType;
typedef typename New_Mesh::VertexType* VertexPointer;
typedef typename Old_Mesh::FaceContainer FaceCont;
typedef typename vcg::GridStaticPtr<typename Old_Mesh::FaceType> GridType;
typedef typename vcg::Box3<int> BoundingBox;
//typedef typename std::pair<vcg::Point3i,vcg::Point3i> PointPair;
typedef vcg::tri::Allocator< New_Mesh > Allocator;
protected:
BoundingBox _bbox;
vcg::Point3i _resolution;
vcg::Point3i _cell_size;
float dim_diag;
int _slice_dimension;
int _current_slice;
VertexIndex *_x_cs; // indici dell'intersezioni della superficie lungo gli Xedge della fetta corrente
VertexIndex *_y_cs; // indici dell'intersezioni della superficie lungo gli Yedge della fetta corrente
VertexIndex *_z_cs; // indici dell'intersezioni della superficie lungo gli Zedge della fetta corrente
VertexIndex *_x_ns; // indici dell'intersezioni della superficie lungo gli Xedge della prossima fetta
VertexIndex *_z_ns; // indici dell'intersezioni della superficie lungo gli Zedge della prossima fetta
//float *_v_cs;///values of distance fields for each direction in current slice
//float *_v_ns;///values of distance fields for each direction in next slice
typedef typename std::pair<bool,float> field_value;
field_value* _v_cs;
field_value* _v_ns;
New_Mesh *_newM;
Old_Mesh *_oldM;
GridType _g;
public:
float max_dim;
/*Walker(Volume_Dataset <short> *Vo,float in,const BoundingBox &bbox,vcg::Point3i &resolution)
{*/
/* init=in;
Vol=Vo;*/
void SetBBParameters()
{
_cell_size.X() =_bbox.DimX()/_resolution.X();
_cell_size.Y() =_bbox.DimY()/_resolution.Y();
_cell_size.Z() =_bbox.DimZ()/_resolution.Z();
///extend bb until the box - resolution and cell matches
while ((_bbox.DimX()%_cell_size.X())!=0)
_bbox.max.X()++;
while ((_bbox.DimY()%_cell_size.Y())!=0)
_bbox.max.Y()++;
while ((_bbox.DimZ()%_cell_size.Z())!=0)
_bbox.max.Z()++;
//exetend bb to 1 cell for each side
_bbox.max+=_cell_size;
_bbox.min-=_cell_size;
///resetting resolution values
_resolution.X()=_bbox.DimX()/_cell_size.X();
_resolution.Y()=_bbox.DimY()/_cell_size.Y();
_resolution.Z()=_bbox.DimZ()/_cell_size.Z();
///asserting values
assert(_bbox.DimX()%_cell_size.X()==0);
assert(_bbox.DimY()%_cell_size.Y()==0);
assert(_bbox.DimZ()%_cell_size.Z()==0);
assert(_cell_size.X()*_resolution.X()==_bbox.DimX());
assert(_cell_size.Y()*_resolution.Y()==_bbox.DimY());
assert(_cell_size.Z()*_resolution.Z()==_bbox.DimZ());
_slice_dimension = _resolution.X()*_resolution.Z();
//Point3f diag=Point3f((float)_cell_size.V(0),(float)_cell_size.V(1),(float)_cell_size.V(2));
//max_dim=diag.Norm();///diagonal of a cell
//
_current_slice = _bbox.min.Y();
Point3f minD=Point3f((float)_bbox.min.V(0),(float)_bbox.min.V(1),(float)_bbox.min.V(2));
Point3f maxD=Point3f((float)_bbox.max.V(0),(float)_bbox.max.V(1),(float)_bbox.max.V(2));
/*Point3f d=(maxD-minD);
dim_diag=d.Norm();*/
}
Walker(const BoundingBox &bbox,vcg::Point3i &resolution)
{
assert (resolution.V(0)<=bbox.DimX());
assert (resolution.V(1)<=bbox.DimY());
assert (resolution.V(2)<=bbox.DimZ());
_bbox= bbox;
_resolution = resolution;
SetBBParameters();
_x_cs = new VertexIndex[ _slice_dimension ];
_y_cs = new VertexIndex[ _slice_dimension ];
_z_cs = new VertexIndex[ _slice_dimension ];
_x_ns = new VertexIndex[ _slice_dimension ];
_z_ns = new VertexIndex[ _slice_dimension ];
_v_cs= new field_value[(_resolution.X()+1)*(_resolution.Z()+1)];
_v_ns= new field_value[(_resolution.X()+1)*(_resolution.Z()+1)];
};
~Walker()
{}
float V(Point3i p)
{
return (V(p.V(0),p.V(1),p.V(2)));
}
float V(int x,int y,int z)
{
assert ((y==_current_slice)||(y==(_current_slice+_cell_size.Y())));
//test if it is outside the bb of the mesh
//vcg::Point3f test=vcg::Point3f((float)x,(float)y,(float)z);
/*if (!_oldM->bbox.IsIn(test))
return (1.f);*/
int index=GetSliceIndex(x,z);
if (y==_current_slice)
{
//assert(_v_cs[index]<dim_diag);
assert(_v_cs[index].first);
return _v_cs[index].second;
}
else
{
//assert(_v_ns[index]<dim_diag);
assert(_v_ns[index].first);
return _v_ns[index].second;
}
}
///return true if the distance form the mesh is less than maxdim and return distance
bool DistanceFromMesh(int x,int y,int z,Old_Mesh *mesh,float &dist)
{
Old_Mesh::FaceType *f=NULL;
//float distm=max_dim;
dist=max_dim;
vcg::Point3f test=vcg::Point3f((float)x,(float)y,(float)z);
////test if it is outside the bb of the mesh
/*if (!_oldM->bbox.IsIn(test))
{
dist=1.f;
return true;
}*/
vcg::Point3f Norm;
vcg::Point3f Target;
vcg::Point3f pip;
//vcg::tri::get<Old_Mesh,GridType,float>((*mesh),test,_g,dist,Norm,Target,f,pip);
f= vcg::trimesh::GetClosestFace<Old_Mesh,GridType>( *mesh,_g,test,dist,dist,Target,Norm,pip);
if (f==NULL)
return false;
else
{
Point3f dir=(test-Target);
//dist=dir.Norm();
dir.Normalize();
//direction of normal inside the mesh
if ((dir*Norm)<0)
dist=-dist;
//the intersection exist
return true;
}
}
///compute the values if an entire slice (per y) distances>dig of a cell are signed with double of
/// the distance of the bb
void CumputeSliceValues(int slice,field_value *slice_values)
{
float dist;
/*for (int i=_bbox.min.X(); i<=_bbox.max.X()-_cell_size.X(); i+=_cell_size.X())
{
for (int k=_bbox.min.Z(); k<=_bbox.max.Z()-_cell_size.X(); k+=_cell_size.Z())
{
*/
for (int i=_bbox.min.X(); i<=_bbox.max.X(); i+=_cell_size.X())
{
for (int k=_bbox.min.Z(); k<=_bbox.max.Z(); k+=_cell_size.Z())
{
int index=GetSliceIndex(i,k);
if (DistanceFromMesh(i,slice,k,_oldM,dist))///compute the distance,inside volume of the mesh is negative
{
//put computed values in the slice values matrix
slice_values[index]=field_value(true,dist);
//end putting values
}
else
slice_values[index]=field_value(false,dist);
}
}
}
template<class EXTRACTOR_TYPE>
void ProcessSlice(std::vector<vcg::Point3i> cells,EXTRACTOR_TYPE &extractor)
{
std::vector<vcg::Point3i>::iterator it;
for (it=cells.begin();it<cells.end();it++)
{
assert((*it).Y()==_current_slice);
assert(V(*it)<=max_dim);
assert(_bbox.IsIn(*it));
vcg::Point3i p1=(*it)+_cell_size;
extractor.ProcessCell((*it), p1);
}
}
void SetGrid()
{
_g.Set(_oldM->face.begin(),_oldM->face.end());
}
template<class EXTRACTOR_TYPE>
void BuildMesh(Old_Mesh &old_mesh,New_Mesh &new_mesh,EXTRACTOR_TYPE &extractor)
{
_newM=&new_mesh;
_oldM=&old_mesh;
SetGrid();
_newM->Clear();
vcg::Point3i p1, p2;
Begin();
extractor.Initialize();
for (int j=_bbox.min.Y(); j<=_bbox.max.Y()-_cell_size.Y(); j+=_cell_size.Y())
{
ProcessSlice<EXTRACTOR_TYPE>(FindCells(),extractor);//find cells where there is the isosurface and examine it
NextSlice();
}
extractor.Finalize();
/*_newM= NULL;*/
}
//return the index of a vertex in slide as it was stored
int GetSliceIndex(int x,int z)
{
int ii = (x - _bbox.min.X())/_cell_size.X();
int zz = (z - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = ii+zz*(_resolution.X()+1);
return (index);
}
///return true if exist in the cell one value <0 and another one >0
bool FindMinMax(vcg::Point3i min,vcg::Point3i max)
{
assert((min.X()<max.X())&&(min.Y()<max.Y())&&(min.Z()<max.Z()));
vcg::Point3i _corners[8];
///control for each corner of the
_corners[0].X()=min.X(); _corners[0].Y()=min.Y(); _corners[0].Z()=min.Z();
_corners[1].X()=max.X(); _corners[1].Y()=min.Y(); _corners[1].Z()=min.Z();
_corners[2].X()=max.X(); _corners[2].Y()=max.Y(); _corners[2].Z()=min.Z();
_corners[3].X()=min.X(); _corners[3].Y()=max.Y(); _corners[3].Z()=min.Z();
_corners[4].X()=min.X(); _corners[4].Y()=min.Y(); _corners[4].Z()=max.Z();
_corners[5].X()=max.X(); _corners[5].Y()=min.Y(); _corners[5].Z()=max.Z();
_corners[6].X()=max.X(); _corners[6].Y()=max.Y(); _corners[6].Z()=max.Z();
_corners[7].X()=min.X(); _corners[7].Y()=max.Y(); _corners[7].Z()=max.Z();
float min_value=max_dim;
float max_value=-max_dim;
field_value value;
for (int i=0;i<8;i++)
{
//if one value is > that bbox.diag this value is not valid
//that is the mark
if (_corners[i].Y()==_current_slice)
value=_v_cs[GetSliceIndex(_corners[i].X(),_corners[i].Z())];
else
value=_v_ns[GetSliceIndex(_corners[i].X(),_corners[i].Z())];
if (value.first==false)
return false;
//assign new values of min and max
if (value.second<min_value)
min_value=value.second;
if (value.second>max_value)
max_value=value.second;
}
/////do not test with zero..
if ((min_value<=0.f)&&(max_value>=0.f))
return true;
return false;
//return true;
}
///filter the cells from to_hexamine vector to the ones that
/// min and max of the cell are <0 and >0
std::vector<vcg::Point3i> FindCells()
{
std::vector<vcg::Point3i> res;
for (int i=_bbox.min.X(); i<=_bbox.max.X()-_cell_size.X(); i+=_cell_size.X())
{
for (int k=_bbox.min.Z(); k<=_bbox.max.Z()-_cell_size.Z(); k+=_cell_size.Z())
{
int x0=i;
int y0=_current_slice;
int z0=k;
int x1=x0+_cell_size.X();
int y1=y0+_cell_size.Y();
int z1=z0+_cell_size.Z();
if (FindMinMax(Point3i(x0,y0,z0),Point3i(x1,y1,z1)))
res.push_back(Point3i(x0,y0,z0));
}
}
return res;
}
//swap slices , the initial value of distance fields ids set as double of bbox of space
void NextSlice()
{
memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex));
std::swap(_x_cs, _x_ns);
std::swap(_z_cs, _z_ns);
std::swap(_v_cs, _v_ns);
_current_slice += _cell_size.Y();
//memset(_v_ns, dim_diag*2.f, _slice_dimension*sizeof(float));
//memset(_v_ns, field_value(false,0.f), _slice_dimension*sizeof(field_value));
CumputeSliceValues(_current_slice+ _cell_size.Y(),_v_ns);
}
//initialize data strucures , the initial value of distance fields ids set as double of bbox of space
void Begin()
{
_current_slice = _bbox.min.Y();
memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_x_ns, -1, _slice_dimension*sizeof(VertexIndex));
memset(_z_ns, -1, _slice_dimension*sizeof(VertexIndex));
/*memset(_v_cs, dim_diag*2.f, _slice_dimension*sizeof(float));
memset(_v_ns, dim_diag*2.f, _slice_dimension*sizeof(float));*/
/*memset(_v_cs, field_value(false,0.f), _slice_dimension*sizeof(field_value));
memset(_v_ns, field_value(false,0.f), _slice_dimension*sizeof(field_value));*/
CumputeSliceValues(_current_slice,_v_cs);
CumputeSliceValues(_current_slice+_cell_size.Y(),_v_ns);
}
bool Exist(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
{
int i = (p1.X() - _bbox.min.X())/_cell_size.X();
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*_resolution.X();
//VertexIndex index =GetSliceIndex(//
int v_ind = 0;
if (p1.X()!=p2.X()) //intersezione della superficie con un Xedge
{
if (p1.Y()==_current_slice)
{
if (_x_cs[index]!=-1)
{
v_ind = _x_cs[index];
v = &_newM->vert[v_ind];
assert(!v->IsD());
return true;
}
}
else
{
if (_x_ns[index]!=-1)
{
v_ind = _x_ns[index];
v = &_newM->vert[v_ind];
assert(!v->IsD());
return true;
}
}
v = NULL;
return false;
}
else if (p1.Y()!=p2.Y()) //intersezione della superficie con un Yedge
{
if (_y_cs[index]!=-1)
{
v_ind =_y_cs[index];
v = &_newM->vert[v_ind];
assert(!v->IsD());
return true;
}
else
{
v = NULL;
return false;
}
}
else if (p1.Z()!=p2.Z())
//intersezione della superficie con un Zedge
{
if (p1.Y()==_current_slice)
{
if ( _z_cs[index]!=-1)
{
v_ind = _z_cs[index];
v = &_newM->vert[v_ind];
assert(!v->IsD());
return true;
}
}
else
{
if (_z_ns[index]!=-1)
{
v_ind = _z_ns[index];
v = &_newM->vert[v_ind];
assert(!v->IsD());
return true;
}
}
v = NULL;
return false;
}
assert (0);
return false;
}
///interpolate
NewCoordType Interpolate(const vcg::Point3i &p1, const vcg::Point3i &p2,int dir)
{
float f1 = (float)V(p1);
float f2 = (float)V(p2);
float u = (float) f1/(f1-f2);
NewCoordType ret=vcg::Point3f((float)p1.V(0),(float)p1.V(1),(float)p1.V(2));
ret.V(dir) = (float) p1.V(dir)*(1.f-u) + u*(float)p2.V(dir);
return (ret);
}
///if there is a vertex in z axis of a cell return the vertex or create it
void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
{
assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y())));
int i = (p1.X() - _bbox.min.X())/_cell_size.X();
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*_resolution.X();
VertexIndex pos;
if (p1.Y()==_current_slice)
{
if ((pos=_x_cs[index])==-1)
{
_x_cs[index] = (VertexIndex) _newM->vert.size();
pos = _x_cs[index];
Allocator::AddVertices( *_newM, 1 );
v = &_newM->vert[pos];
v->P()=Interpolate(p1,p2,0);
return;
}
}
if (p1.Y()==_current_slice+_cell_size.Y())
{
if ((pos=_x_ns[index])==-1)
{
_x_ns[index] = (VertexIndex) _newM->vert.size();
pos = _x_ns[index];
Allocator::AddVertices( *_newM, 1 );
v = &_newM->vert[pos];
v->P()=Interpolate(p1,p2,0);
return;
}
}
v = &_newM->vert[pos];
}
///if there is a vertex in y axis of a cell return the vertex or create it
void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
{
assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y())));
int i = (p1.X() - _bbox.min.X())/_cell_size.X();
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*_resolution.X();
VertexIndex pos;
if ((pos=_y_cs[index])==-1)
{
_y_cs[index] = (VertexIndex) _newM->vert.size();
pos = _y_cs[index];
Allocator::AddVertices( *_newM, 1);
v = &_newM->vert[ pos ];
v->P()=Interpolate(p1,p2,1);
}
v = &_newM->vert[pos];
}
///if there is a vertex in z axis of a cell return the vertex or create it
void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
{
assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y())));
int i = (p1.X() - _bbox.min.X())/_cell_size.X();
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*_resolution.X();
VertexIndex pos;
if (p1.Y()==_current_slice)
{
if ((pos=_z_cs[index])==-1)
{
_z_cs[index] = (VertexIndex) _newM->vert.size();
pos = _z_cs[index];
Allocator::AddVertices( *_newM, 1 );
v = &_newM->vert[pos];
v->P()=Interpolate(p1,p2,2);
return;
}
}
if (p1.Y()==_current_slice+_cell_size.Y())
{
if ((pos=_z_ns[index])==-1)
{
_z_ns[index] = (VertexIndex) _newM->vert.size();
pos = _z_ns[index];
Allocator::AddVertices( *_newM, 1 );
v = &_newM->vert[pos];
v->P()=Interpolate(p1,p2,2);
return;
}
}
v = &_newM->vert[pos];
}
};//end class walker
public:
typedef typename Walker< Old_Mesh,New_Mesh> MyWalker;
typedef typename vcg::tri::MarchingCubes<New_Mesh, MyWalker> MarchingCubes;
typedef typename vcg::tri::ExtendedMarchingCubes<New_Mesh, MyWalker> ExtendedMarchingCubes;
///resample the mesh using marching cube algorithm ,the accuracy is the dimension of one cell the parameter
template <RES::MarchMode mm>
static void Resample(Old_Mesh &old_mesh,New_Mesh &new_mesh,vcg::Point3<int> accuracy,float max_dist)
{
new_mesh.Clear();
if (Old_Mesh::HasPerFaceNormal())
vcg::tri::UpdateNormals<Old_Mesh>::PerFaceNormalized(old_mesh);
if (Old_Mesh::HasPerVertexNormal())
vcg::tri::UpdateNormals<Old_Mesh>::PerVertexNormalized(old_mesh);
///the mesh must have plane for ugrid
if (!Old_Mesh::FaceType::HasEdgePlane())
assert(0);
else
vcg::tri::UpdateEdges<Old_Mesh>::Set(old_mesh);
///be sure that the bounding box is updated
vcg::tri::UpdateBounding<Old_Mesh>::Box(old_mesh);
// MARCHING CUBES CALLS
Point3i min=Point3i((int)(old_mesh.bbox.min.V(0)),(int)(old_mesh.bbox.min.V(1)),(int)(old_mesh.bbox.min.V(2)));
Point3i max=Point3i((int)ceil(old_mesh.bbox.max.V(0)),(int)ceil(old_mesh.bbox.max.V(1)),(int)ceil(old_mesh.bbox.max.V(2)));
vcg::Box3<int> boxInt=Box3<int>(min,max);
float rx=((float)boxInt.DimX())/(float)accuracy.X();
float ry=((float)boxInt.DimY())/(float)accuracy.Y();
float rz=((float)boxInt.DimZ())/(float)accuracy.Z();
int rxi=(int)ceil(rx);
int ryi=(int)ceil(ry);
int rzi=(int)ceil(rz);
Point3i res=Point3i(rxi,ryi,rzi);
MyWalker walker(boxInt,res);
walker.max_dim=max_dist;
if (mm==MMarchingCubes)
{
MarchingCubes mc(new_mesh, walker);
walker.BuildMesh<MarchingCubes>(old_mesh,new_mesh,mc);
}
else if (mm==MExtendedMarchingCubes)
{
ExtendedMarchingCubes mc(new_mesh, walker,30);
walker.BuildMesh<ExtendedMarchingCubes>(old_mesh,new_mesh,mc);
}
if (New_Mesh::HasFFTopology())
vcg::tri::UpdateTopology<New_Mesh>::FaceFace(new_mesh);
if (New_Mesh::HasVFTopology())
vcg::tri::UpdateTopology<New_Mesh>::VertexFace(new_mesh);
if (New_Mesh::HasPerFaceNormal())
vcg::tri::UpdateNormals<New_Mesh>::PerFaceNormalized(new_mesh);
if (New_Mesh::HasPerVertexNormal())
vcg::tri::UpdateNormals<New_Mesh>::PerVertexNormalized(new_mesh);
}
};//end class resampler
};//end namespace trimesh
};//end namespace vcg
#endif