vcglib/vcg/complex/trimesh/clean.h

1666 lines
50 KiB
C
Raw Normal View History

2004-06-24 10:03:59 +02:00
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
2004-06-24 10:03:59 +02:00
$Log: not supported by cvs2svn $
2008-04-24 07:04:25 +02:00
Revision 1.58 2008/03/11 14:16:40 cignoni
Added check on deleted faces in RemoveDegenerateFace
Revision 1.57 2008/03/06 08:37:16 cignoni
added HasConsistentPerWedgeTexCoord
2008-03-06 09:37:16 +01:00
Revision 1.56 2008/01/24 11:52:05 cignoni
corrected small bug in RemoveDuplicateVertex
Revision 1.55 2007/10/29 11:32:46 cignoni
Added a missing IsD() test
2007-10-29 12:32:46 +01:00
Revision 1.54 2007/10/16 16:46:53 cignoni
Added Allocator::DeleteFace and Allocator::DeleteVertex; Now the use of SetD() should be deprecated.
Revision 1.53 2007/07/24 07:09:49 cignoni
Added remove degenerate vertex to manage vertex with NAN coords
Revision 1.52 2007/06/04 06:45:05 fiorin
Replaced call to old StarSize method with NumberOfIncidentFaces
Revision 1.51 2007/03/27 09:23:32 cignoni
added honoring of selected flag for flipmesh
Revision 1.50 2007/03/12 15:38:03 tarini
Texture coord name change! "TCoord" and "Texture" are BAD. "TexCoord" is GOOD.
Revision 1.49 2007/02/27 15:17:17 marfr960
std::numeric_limits<ScalarType>::max() -> (std::numeric_limits<ScalarType>::max)()
to avoid annoying misunderstaindings on msvc8
Revision 1.48 2007/01/11 10:12:19 cignoni
Removed useless and conflicting inclusion of face.h
Revision 1.47 2006/12/01 21:26:14 cignoni
Corrected bug in the IsFFAdjacencyConsistent the Topology checking function.
Revision 1.46 2006/12/01 08:12:30 cignoni
Added a function for FF topology consistency check
Revision 1.45 2006/12/01 00:00:56 cignoni
Corrected IsOrientedMesh. After the templating of the swapedge it did not worked any more....
Added Texture management to the FlipMesh
Revision 1.44 2006/11/27 10:36:35 cignoni
Added IsSizeConsistent
2006-11-27 11:36:35 +01:00
Revision 1.43 2006/11/09 17:26:24 cignoni
Corrected RemoveNonManifoldFace
2006-11-09 18:26:24 +01:00
Revision 1.42 2006/10/15 07:31:22 cignoni
typenames and qualifiers for gcc compliance
Revision 1.41 2006/10/09 20:06:46 cignoni
Added Remove NonManifoldFace
2006-10-09 22:06:46 +02:00
Revision 1.40 2006/05/25 09:41:09 cignoni
missing std and other gcc detected syntax errors
Revision 1.39 2006/05/16 21:51:07 cignoni
Redesigned the function for the removal of faces according to their area and edge lenght
Revision 1.38 2006/05/03 21:40:27 cignoni
Changed HasMark to HasPerFaceMark(m) and commented some unused internal vars of the class
Revision 1.37 2006/04/18 07:01:22 zifnab1974
added a ; how could this ever compile?
2006-04-18 09:01:22 +02:00
Revision 1.36 2006/04/12 15:08:51 cignoni
Added ConnectedIterator (should be moved somewhere else)
Cleaned ConnectedComponents
Revision 1.35 2006/02/28 16:51:29 ponchio
Added typename
2006-02-28 17:51:29 +01:00
Revision 1.34 2006/02/01 15:27:00 cignoni
Added IsD() test in SelfIntersection
2006-02-01 16:27:00 +01:00
Revision 1.33 2006/01/27 09:55:25 corsini
fix signed/unsigned mismatch
2006-01-27 10:58:47 +01:00
Revision 1.32 2006/01/23 13:33:54 cignoni
Added a missing vcg::
2006-01-23 14:33:54 +01:00
Revision 1.31 2006/01/22 17:06:27 cignoni
vi/fi mismatch in ClipWithBox
2006-01-22 18:06:27 +01:00
Revision 1.30 2006/01/22 10:07:42 cignoni
Corrected use of Area with the unambiguous DoubleArea
Added ClipWithBox function
Revision 1.29 2006/01/11 15:40:14 cignoni
Added RemoveDegenerateFace and added its automatic invocation at the end of RemoveDuplicateVertex
Revision 1.28 2006/01/02 09:49:36 cignoni
Added some missing std::
2006-01-02 10:49:36 +01:00
Revision 1.27 2005/12/29 12:27:37 cignoni
Splitted IsComplexManifold in IsTwoManifoldFace and IsTwoManifoldVertex
Revision 1.26 2005/12/21 14:15:03 corsini
Remove printf
2005-12-21 15:15:03 +01:00
Revision 1.25 2005/12/21 13:09:03 corsini
Modify genus computation
2005-12-21 14:09:03 +01:00
Revision 1.24 2005/12/19 15:13:06 corsini
Fix IsOrientedMesh
2005-12-19 16:13:06 +01:00
Revision 1.23 2005/12/16 13:13:44 cignoni
Reimplemented SelfIntersection
2005-12-16 14:13:44 +01:00
Revision 1.22 2005/12/16 10:54:59 corsini
Reimplement isOrientedMesh
2005-12-16 11:54:59 +01:00
Revision 1.21 2005/12/16 10:53:39 corsini
Take account for deletion in isComplexManifold
Revision 1.20 2005/12/16 10:51:43 corsini
Take account for deletion in isRegularMesh
Revision 1.19 2005/12/15 13:53:13 corsini
Reimplement isComplexManifold
Reimplement isRegular
Revision 1.18 2005/12/14 14:04:35 corsini
Fix genus computation
2005-12-14 15:04:35 +01:00
Revision 1.17 2005/12/12 12:11:40 cignoni
Removed unuseful detectunreferenced
2005-12-12 13:11:40 +01:00
Revision 1.16 2005/12/04 00:25:00 cignoni
Changed DegeneratedFaces -> RemoveZeroAreaFaces
Revision 1.15 2005/12/03 22:34:25 cignoni
Added missing include and sdt:: (tnx to Mario Latronico)
Revision 1.14 2005/12/02 00:14:43 cignoni
Removed some pointer vs iterator issues that prevented gcc compilation
Revision 1.13 2005/11/22 14:04:10 rita_borgo
Completed and tested self-intersection routine
Revision 1.12 2005/11/17 00:41:07 cignoni
Removed Initialize use updateflags::Clear() instead.
Revision 1.11 2005/11/16 16:33:23 rita_borgo
Changed ComputeSelfintersection
2005-11-16 17:33:23 +01:00
Revision 1.10 2005/11/15 12:16:34 rita_borgo
Changed DegeneratedFaces, sets the D flags for each faces
that is found to be degenerated.
CounEdges and ConnectedComponents check now if a face IsD()
else for degenerated faces many asserts fail.
Revision 1.9 2005/11/14 09:28:18 cignoni
changed access to face functions (border, area)
removed some typecast warnings
Revision 1.8 2005/10/11 16:03:40 rita_borgo
Added new functions belonging to triMeshInfo
Started the Self-Intersection routine
Revision 1.7 2005/10/03 15:57:53 rita_borgo
Alligned with TriMeshInfo Code
2005-10-03 17:57:53 +02:00
Revision 1.6 2005/01/28 11:59:35 cignoni
Add std:: to stl containers
2005-01-28 12:59:35 +01:00
Revision 1.5 2004/09/20 08:37:57 cignoni
Better Doxygen docs
2004-09-20 10:37:57 +02:00
Revision 1.4 2004/08/25 15:15:26 ganovelli
minor changes to comply gcc compiler (typename's and stuff)
Revision 1.3 2004/07/18 06:55:37 cignoni
NewUserBit -> NewBitFlag
2004-07-18 08:55:37 +02:00
Revision 1.2 2004/07/09 15:48:37 tarini
Added an include (<algorithm>)
2004-07-09 17:48:37 +02:00
Revision 1.1 2004/06/24 08:03:59 cignoni
Initial Release
2004-06-24 10:03:59 +02:00
****************************************************************************/
#ifndef __VCGLIB_CLEAN
#define __VCGLIB_CLEAN
// Standard headers
2004-06-24 10:03:59 +02:00
#include <map>
2004-07-09 17:48:37 +02:00
#include <algorithm>
#include <stack>
2004-07-09 17:48:37 +02:00
// VCG headers
#include <vcg/simplex/face/pos.h>
#include <vcg/simplex/face/topology.h>
#include <vcg/complex/trimesh/base.h>
#include <vcg/complex/trimesh/closest.h>
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/space/index/spatial_hashing.h>
2009-03-30 22:58:18 +02:00
#include <vcg/complex/trimesh/allocate.h>
#include <vcg/complex/trimesh/update/selection.h>
#include <vcg/complex/trimesh/update/flag.h>
#include <vcg/complex/trimesh/update/normal.h>
#include <vcg/complex/trimesh/update/topology.h>
#include <vcg/space/triangle3.h>
2004-06-24 10:03:59 +02:00
namespace vcg {
namespace tri{
template <class ConnectedMeshType>
class ConnectedIterator
{
public:
typedef ConnectedMeshType MeshType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::ConstFaceIterator ConstFaceIterator;
typedef typename MeshType::FaceContainer FaceContainer;
typedef typename vcg::Box3<ScalarType> Box3Type;
public:
void operator ++()
{
FacePointer fpt=sf.top();
sf.pop();
for(int j=0;j<3;++j)
if( !face::IsBorder(*fpt,j) )
{
FacePointer l=fpt->FFp(j);
if( !tri::IsMarked(*mp,l) )
{
tri::Mark(*mp,l);
sf.push(l);
}
}
}
void start(MeshType &m, FacePointer p)
{
mp=&m;
while(!sf.empty()) sf.pop();
UnMarkAll(m);
assert(p);
assert(!p->IsD());
tri::Mark(m,p);
sf.push(p);
}
bool completed() {
return sf.empty();
}
FacePointer operator *()
{
return sf.top();
}
private:
std::stack<FacePointer> sf;
MeshType *mp;
};
///
/** \addtogroup trimesh */
/*@{*/
/// Class of static functions to clean/correct/restore meshs.
template <class CleanMeshType>
class Clean
2004-06-24 10:03:59 +02:00
{
public:
typedef CleanMeshType MeshType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::ConstVertexIterator ConstVertexIterator;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::ConstFaceIterator ConstFaceIterator;
typedef typename MeshType::FaceContainer FaceContainer;
2006-01-23 14:33:54 +01:00
typedef typename vcg::Box3<ScalarType> Box3Type;
typedef GridStaticPtr<FaceType, ScalarType > TriMeshGrid;
typedef Point3<ScalarType> Point3x;
//TriMeshGrid gM;
//FaceIterator fi;
//FaceIterator gi;
//vcg::face::Pos<FaceType> he;
//vcg::face::Pos<FaceType> hei;
/* classe di confronto per l'algoritmo di eliminazione vertici duplicati*/
class RemoveDuplicateVert_Compare{
public:
inline bool operator()(VertexPointer const &a, VertexPointer const &b)
2004-06-24 10:03:59 +02:00
{
return (*a).cP() < (*b).cP();
2004-06-24 10:03:59 +02:00
}
};
/** This function removes all duplicate vertices of the mesh by looking only at their spatial positions.
Note that it does not update any topology relation that could be affected by this like the VT or TT relation.
the reason this function is usually performed BEFORE building any topology information.
*/
static int RemoveDuplicateVertex( MeshType & m, bool RemoveDegenerateFlag=true) // V1.0
{
if(m.vert.size()==0 || m.vn==0) return 0;
std::map<VertexPointer, VertexPointer> mp;
2008-07-09 12:31:55 +02:00
size_t i,j;
VertexIterator vi;
int deleted=0;
int k=0;
size_t num_vert = m.vert.size();
std::vector<VertexPointer> perm(num_vert);
for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi, ++k)
perm[k] = &(*vi);
RemoveDuplicateVert_Compare c_obj;
std::sort(perm.begin(),perm.end(),c_obj);
j = 0;
i = j;
mp[perm[i]] = perm[j];
++i;
for(;i!=num_vert;)
{
if( (! (*perm[i]).IsD()) &&
(! (*perm[j]).IsD()) &&
(*perm[i]).P() == (*perm[j]).cP() )
{
VertexPointer t = perm[i];
mp[perm[i]] = perm[j];
++i;
Allocator<MeshType>::DeleteVertex(m,*t);
deleted++;
}
else
{
j = i;
++i;
}
}
FaceIterator fi;
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
if( !(*fi).IsD() )
for(k = 0; k < 3; ++k)
if( mp.find( (typename MeshType::VertexPointer)(*fi).V(k) ) != mp.end() )
{
(*fi).V(k) = &*mp[ (*fi).V(k) ];
}
if(RemoveDegenerateFlag) RemoveDegenerateFace(m);
return deleted;
}
2009-04-23 23:21:21 +02:00
class SortedTriple
{
public:
SortedTriple() {}
SortedTriple(unsigned int v0, unsigned int v1, unsigned int v2,FacePointer _fp)
{
v[0]=v0;v[1]=v1;v[2]=v2;
fp=_fp;
std::sort(v,v+3);
}
bool operator < (const SortedTriple &p) const
{
return (v[2]!=p.v[2])?(v[2]<p.v[2]):
(v[1]!=p.v[1])?(v[1]<p.v[1]):
(v[0]<p.v[0]); }
2009-04-23 23:21:21 +02:00
bool operator == (const SortedTriple &s) const
{
if( (v[0]==s.v[0]) && (v[1]==s.v[1]) && (v[2]==s.v[2]) ) return true;
return false;
}
unsigned int v[3];
FacePointer fp;
};
/** This function removes all duplicate faces of the mesh by looking only at their vertex reference.
So it should be called after unification of vertices.
Note that it does not update any topology relation that could be affected by this like the VT or TT relation.
the reason this function is usually performed BEFORE building any topology information.
*/
static int RemoveDuplicateFace( MeshType & m) // V1.0
{
FaceIterator fi;
std::vector<SortedTriple> fvec;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
fvec.push_back(SortedTriple( tri::Index(m,(*fi).V(0)),
tri::Index(m,(*fi).V(1)),
tri::Index(m,(*fi).V(2)),
&*fi));
}
assert (m.fn == fvec.size());
//for(int i=0;i<fvec.size();++i) qDebug("fvec[%i] = (%i %i %i)(%i)",i,fvec[i].v[0],fvec[i].v[1],fvec[i].v[2],tri::Index(m,fvec[i].fp));
std::sort(fvec.begin(),fvec.end());
int total=0;
for(int i=0;i<fvec.size()-1;++i)
{
if(fvec[i]==fvec[i+1])
{
total++;
tri::Allocator<MeshType>::DeleteFace(m, *(fvec[i].fp) );
//qDebug("deleting face %i (pos in fvec %i)",tri::Index(m,fvec[i].fp) ,i);
}
}
return total;
}
/** This function removes that are not referenced by any face. The function updates the vn counter.
@param m The mesh
@return The number of removed vertices
*/
2005-12-12 13:11:40 +01:00
static int RemoveUnreferencedVertex( MeshType& m, bool DeleteVertexFlag=true) // V1.0
{
FaceIterator fi;
VertexIterator vi;
int referredBit = VertexType::NewBitFlag();
int j;
int deleted = 0;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
(*vi).ClearUserBit(referredBit);
for(fi=m.face.begin();fi!=m.face.end();++fi)
if( !(*fi).IsD() )
for(j=0;j<3;++j)
(*fi).V(j)->SetUserBit(referredBit);
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if( (!(*vi).IsD()) && (!(*vi).IsUserBit(referredBit)))
{
if(DeleteVertexFlag) Allocator<MeshType>::DeleteVertex(m,*vi);
++deleted;
}
VertexType::DeleteBitFlag(referredBit);
return deleted;
}
/**
Degenerate vertices are vertices that have coords with invalid floating point values,
All the faces incident on deleted vertices are also deleted
*/
static int RemoveDegenerateVertex(MeshType& m)
{
VertexIterator vi;
int count_vd = 0;
for(vi=m.vert.begin(); vi!=m.vert.end();++vi)
if(math::IsNAN( (*vi).P()[0]) ||
math::IsNAN( (*vi).P()[1]) ||
math::IsNAN( (*vi).P()[2]) )
{
count_vd++;
Allocator<MeshType>::DeleteVertex(m,*vi);
}
FaceIterator fi;
int count_fd = 0;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
2007-10-29 12:32:46 +01:00
if(!(*fi).IsD())
if( (*fi).V(0)->IsD() ||
(*fi).V(1)->IsD() ||
(*fi).V(2)->IsD() )
2007-10-29 12:32:46 +01:00
{
count_fd++;
Allocator<MeshType>::DeleteFace(m,*fi);
}
return count_vd;
}
/**
Degenerate faces are faces that are Topologically degenerate,
i.e. have two or more vertex reference that link the same vertex
(and not only two vertexes with the same coordinates).
All Degenerate faces are zero area faces BUT not all zero area faces are degenerate.
2006-10-09 22:06:46 +02:00
We do not take care of topology because when we have degenerate faces the
topology calculation functions crash.
*/
static int RemoveDegenerateFace(MeshType& m)
{
FaceIterator fi;
int count_fd = 0;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
if((*fi).V(0) == (*fi).V(1) ||
(*fi).V(0) == (*fi).V(2) ||
(*fi).V(1) == (*fi).V(2) )
{
count_fd++;
Allocator<MeshType>::DeleteFace(m,*fi);
}
}
return count_fd;
}
static int RemoveNonManifoldVertex(MeshType& m)
{
2010-02-24 10:55:28 +01:00
/*int count_vd = */
CountNonManifoldVertexFF(m,true);
/*int count_fd = */
UpdateSelection<MeshType>::FaceFromVertexLoose(m);
int count_removed = 0;
FaceIterator fi;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if(!(*fi).IsD() && (*fi).IsS())
Allocator<MeshType>::DeleteFace(m,*fi);
VertexIterator vi;
for(vi=m.vert.begin(); vi!=m.vert.end();++vi)
if(!(*vi).IsD() && (*vi).IsS()) {
++count_removed;
Allocator<MeshType>::DeleteVertex(m,*vi);
}
return count_removed;
}
2006-10-09 22:06:46 +02:00
static int RemoveNonManifoldFace(MeshType& m)
{
FaceIterator fi;
int count_fd = 0;
std::vector<FacePointer> ToDelVec;
2006-10-09 22:06:46 +02:00
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if (!fi->IsD())
{
if ((!IsManifold(*fi,0))||
(!IsManifold(*fi,1))||
(!IsManifold(*fi,2)))
ToDelVec.push_back(&*fi);
}
2006-11-09 18:26:24 +01:00
2008-07-09 12:31:55 +02:00
for(size_t i=0;i<ToDelVec.size();++i)
2006-10-09 22:06:46 +02:00
{
2006-11-09 18:26:24 +01:00
if(!ToDelVec[i]->IsD())
{
2006-10-09 22:06:46 +02:00
FaceType &ff= *ToDelVec[i];
if ((!IsManifold(ff,0))||
(!IsManifold(ff,1))||
(!IsManifold(ff,2)))
2006-11-09 18:26:24 +01:00
{
for(int j=0;j<3;++j)
if(!face::IsBorder<FaceType>(ff,j))
vcg::face::FFDetach<FaceType>(ff,j);
Allocator<MeshType>::DeleteFace(m,ff);
count_fd++;
2006-11-09 18:26:24 +01:00
}
}
2006-10-09 22:06:46 +02:00
}
return count_fd;
}
/*
The following functions remove faces that are geometrically "bad" according to edges and area criteria.
They remove the faces that are out of a given range of area or edges (e.g. faces too large or too small, or with edges too short or too long)
but that could be topologically correct.
These functions can optionally take into account only the selected faces.
*/
template<bool Selected>
static int RemoveFaceOutOfRangeAreaSel(MeshType& m, ScalarType MinAreaThr=0, ScalarType MaxAreaThr=(std::numeric_limits<ScalarType>::max)())
{
FaceIterator fi;
int count_fd = 0;
MinAreaThr*=2;
MaxAreaThr*=2;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if(!(*fi).IsD())
if(!Selected || (*fi).IsS())
{
const ScalarType doubleArea=DoubleArea<FaceType>(*fi);
if((doubleArea<=MinAreaThr) || (doubleArea>=MaxAreaThr) )
{
Allocator<MeshType>::DeleteFace(m,*fi);
count_fd++;
}
}
return count_fd;
}
template<bool Selected>
static int RemoveFaceOutOfRangeEdgeSel( MeshType& m, ScalarType MinEdgeThr=0, ScalarType MaxEdgeThr=(std::numeric_limits<ScalarType>::max)())
{
FaceIterator fi;
int count_fd = 0;
MinEdgeThr=MinEdgeThr*MinEdgeThr;
MaxEdgeThr=MaxEdgeThr*MaxEdgeThr;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if(!(*fi).IsD())
if(!Selected || (*fi).IsS())
{
for(unsigned int i=0;i<3;++i)
{
const ScalarType squaredEdge=SquaredDistance((*fi).V0(i)->cP(),(*fi).V1(i)->cP());
if((squaredEdge<=MinEdgeThr) || (squaredEdge>=MaxEdgeThr) )
{
count_fd++;
Allocator<MeshType>::DeleteFace(m,*fi);
break; // skip the rest of the edges of the tri
}
}
}
return count_fd;
}
// alias for the old style. Kept for backward compatibility
static int RemoveZeroAreaFace(MeshType& m) { return RemoveFaceOutOfRangeArea(m);}
// Aliases for the functions that do not look at selection
static int RemoveFaceOutOfRangeArea(MeshType& m, ScalarType MinAreaThr=0, ScalarType MaxAreaThr=(std::numeric_limits<ScalarType>::max)())
{
return RemoveFaceOutOfRangeAreaSel<false>(m,MinAreaThr,MaxAreaThr);
}
static int RemoveFaceOutOfRangeEdge(MeshType& m, ScalarType MinEdgeThr=0, ScalarType MaxEdgeThr=(std::numeric_limits<ScalarType>::max)())
{
return RemoveFaceOutOfRangeEdgeSel<false>(m,MinEdgeThr,MaxEdgeThr);
}
static int ClipWithBox( MeshType & m, Box3Type &bb)
{
FaceIterator fi;
VertexIterator vi;
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD())
{
if(!bb.IsIn((*vi).P()) ) Allocator<MeshType>::DeleteVertex(m,*vi);
}
2006-01-22 18:06:27 +01:00
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD())
{
if( (*fi).V(0)->IsD() ||
(*fi).V(1)->IsD() ||
(*fi).V(2)->IsD() ) Allocator<MeshType>::DeleteFace(m,*fi);
}
return m.vn;
}
/**
* Check if the mesh is a manifold.
*
* First of all, for each face the FF condition is checked.
* Then, a second test is performed: for each vertex the
* number of face found have to be the same of the number of
* face found with the VF walk trough.
*/
static bool IsTwoManifoldFace( MeshType & m )
{
bool flagManifold = true;
FaceIterator fi;
// First Test
assert(m.HasFFTopology());
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
{
if (!fi->IsD())
{
if ((!IsManifold(*fi,0))||
(!IsManifold(*fi,1))||
(!IsManifold(*fi,2)))
{
flagManifold = false;
break;
}
}
}
return flagManifold;
}
/**
* Is the mesh only composed by quadrilaterals?
*/
static bool IsBitQuadOnly(const MeshType &m)
{
typedef typename MeshType::FaceType F;
if (!m.HasPerFaceFlags()) return false;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
if ( tmp != F::FAUX0 && tmp != F::FAUX1 && tmp != F::FAUX2) return false;
}
return true;
}
/**
* Is the mesh only composed by triangles? (non polygonal faces)
*/
static bool IsBitTriOnly(const MeshType &m)
{
if (!m.HasPerFaceFlags()) return true;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) {
if (
!fi->IsD() && fi->IsAnyF()
) return false;
}
return true;
}
static bool IsBitPolygonal(const MeshType &m){
return !IsBitTriOnly(m);
}
/**
* Is the mesh only composed by quadrilaterals and triangles? (no pentas, etc)
*/
static bool IsBitTriQuadOnly(const MeshType &m)
{
typedef typename MeshType::FaceType F;
if (!m.HasPerFaceFlags()) return false;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
if ( tmp!=F::FAUX0 && tmp!=F::FAUX1 && tmp!=F::FAUX2 && tmp!=0 ) return false;
}
return true;
}
/**
* How many quadrilaterals?
*/
static int CountBitQuads(const MeshType &m)
{
if (!m.HasPerFaceFlags()) return 0;
typedef typename MeshType::FaceType F;
int count=0;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
if ( tmp==F::FAUX0 || tmp==F::FAUX1 || tmp==F::FAUX2) count++;
}
return count / 2;
}
/**
* How many triangles? (non polygonal faces)
*/
static int CountBitTris(const MeshType &m)
{
if (!m.HasPerFaceFlags()) return m.fn;
int count=0;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
if (!(fi->IsAnyF())) count++;
}
return count;
}
/**
* How many polygons of any kind? (including triangles)
*/
static int CountBitPolygons(const MeshType &m)
{
if (!m.HasPerFaceFlags()) return m.fn;
typedef typename MeshType::FaceType F;
int count = 0;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
if (fi->IsF(0)) count++;
if (fi->IsF(1)) count++;
if (fi->IsF(2)) count++;
}
return m.fn - count/2;
}
/**
* The number of polygonal faces is
* FN - EN_f (each faux edge hides exactly one triangular face or in other words a polygon of n edges has n-3 faux edges.)
* In the general case where a The number of polygonal faces is
* FN - EN_f + VN_f
* where:
* EN_f is the number of faux edges.
* VN_f is the number of faux vertices (e.g vertices completely surrounded by faux edges)
* as a intuitive proof think to a internal vertex that is collapsed onto a border of a polygon:
* it deletes 2 faces, 1 faux edges and 1 vertex so to keep the balance you have to add back the removed vertex.
*/
static int CountBitLargePolygons(MeshType &m)
{
UpdateFlags<MeshType>::VertexSetV(m);
// First loop Clear all referenced vertices
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if (!fi->IsD())
for(int i=0;i<3;++i) fi->V(i)->ClearV();
// Second Loop, count (twice) faux edges and mark all vertices touched by non faux edges (e.g vertexes on the boundary of a polygon)
if (!m.HasPerFaceFlags()) return m.fn;
typedef typename MeshType::FaceType F;
int countE = 0;
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if (!fi->IsD()) {
for(int i=0;i<3;++i)
{
if (fi->IsF(i))
countE++;
else
{
fi->V0(i)->SetV();
fi->V1(i)->SetV();
}
}
}
// Third Loop, count the number of referenced vertexes that are completely surrounded by faux edges.
int countV = 0;
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if (!vi->IsD() && !vi->IsV()) countV++;
return m.fn - countE/2 + countV ;
}
/**
* Checks that the mesh has consistent per-face faux edges
* (the ones that merges triangles into larger polygons).
* A border edge should never be faux, and faux edges should always be
* reciprocated by another faux edges.
* It requires FF adjacency.
*/
static bool HasConsistentPerFaceFauxFlag(const MeshType &m)
{
assert(m.HasPerFaceFlags());
assert(m.HasFFTopology()); // todo: remove this constraint
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
for (int k=0; k<3; k++)
if( fi->IsF(k) != fi->cFFp(k)->IsF(fi->cFFi(k)) ) {
return false;
}
// non-reciprocal faux edge!
// (OR: border faux edge, which is likewise inconsistent)
return true;
}
2009-10-14 15:56:06 +02:00
static bool HasConsistentEdges(const MeshType &m)
{
assert(m.HasPerFaceFlags());
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
for (int k=0; k<3; k++)
{
VertexType *v0=(*fi).V(0);
VertexType *v1=(*fi).V(1);
VertexType *v2=(*fi).V(2);
if ((v0==v1)||(v0==v2)||(v1==v2))
return false;
}
return true;
}
static int CountNonManifoldVertexFF( MeshType & m, bool select = true )
{
assert(tri::HasFFAdjacency(m));
int nonManifoldCnt=0;
SimpleTempData<typename MeshType::VertContainer, int > TD(m.vert,0);
// primo loop, si conta quanti facce incidono su ogni vertice...
FaceIterator fi;
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
{
TD[(*fi).V(0)]++;
TD[(*fi).V(1)]++;
TD[(*fi).V(2)]++;
}
tri::UpdateFlags<MeshType>::VertexClearV(m);
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
{
for(int i=0;i<3;i++) if(!(*fi).V(i)->IsV()){
(*fi).V(i)->SetV();
face::Pos<FaceType> pos(&(*fi),i);
int starSizeFF = pos.NumberOfIncidentFaces();
if (starSizeFF != TD[(*fi).V(i)])
{
if(select) (*fi).V(i)->SetS();
nonManifoldCnt++;
}
}
}
return nonManifoldCnt;
}
static int CountNonManifoldVertexFFVF( MeshType & m, bool select = true )
{
int nonManifoldCnt=0;
VertexIterator vi;
bool flagManifold = true;
assert(tri::HasVFAdjacency(m));
assert(tri::HasFFAdjacency(m));
face::VFIterator<FaceType> vfi;
int starSizeFF;
int starSizeVF;
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
{
if (!vi->IsD())
{
face::VFIterator<FaceType> vfi(&*vi);
if(vfi.End()) // if the vertex has no incident face (e.g. the iterator is at the end)
continue;
face::Pos<FaceType> pos((*vi).VFp(), &*vi);
starSizeFF = pos.NumberOfIncidentFaces();
starSizeVF = 0;
while(!vfi.End())
{
++vfi;
starSizeVF++;
}
if (starSizeFF != starSizeVF)
{
flagManifold = false;
if(select) (*vi).SetS();
nonManifoldCnt++;
}
}
}
return nonManifoldCnt;
}
static bool IsTwoManifoldVertexFF( MeshType & m )
{
return CountNonManifoldVertexFF(m,false) == 0 ;
}
static bool IsTwoManifoldVertexFFVF( MeshType & m )
{
return CountNonManifoldVertexFFVF(m,false) == 0 ;
}
static void CountEdges( MeshType & m, int &count_e, int &boundary_e )
{
UpdateFlags<MeshType>::FaceClearV(m);
FaceIterator fi;
vcg::face::Pos<FaceType> he;
vcg::face::Pos<FaceType> hei;
bool counted =false;
for(fi=m.face.begin();fi!=m.face.end();fi++)
{
if(!((*fi).IsD()))
{
(*fi).SetV();
count_e +=3; //assume that we have to increase the number of edges with three
for(int j=0; j<3; j++)
{
if (face::IsBorder(*fi,j)) //If this edge is a border edge
boundary_e++; // then increase the number of boundary edges
else if (IsManifold(*fi,j))//If this edge is manifold
{
if((*fi).FFp(j)->IsV()) //If the face on the other side of the edge is already selected
count_e--; // we counted one edge twice
}
else//We have a non-manifold edge
{
hei.Set(&(*fi), j , fi->V(j));
he=hei;
he.NextF();
while (he.f!=hei.f)// so we have to iterate all faces that are connected to this edge
{
if (he.f->IsV())// if one of the other faces was already visited than this edge was counted already.
{
counted=true;
break;
}
else
{
he.NextF();
}
}
if (counted)
{
count_e--;
counted=false;
}
}
}
}
}
}
static int CountHoles( MeshType & m)
{
2010-03-18 11:03:31 +01:00
int numholev=0;
FaceIterator fi;
FaceIterator gi;
vcg::face::Pos<FaceType> he;
vcg::face::Pos<FaceType> hei;
2006-01-02 10:49:36 +01:00
std::vector< std::vector<Point3x> > holes; //indices of vertices
for(fi=m.face.begin();fi!=m.face.end();++fi)
(*fi).ClearS();
gi=m.face.begin(); fi=gi;
for(fi=m.face.begin();fi!=m.face.end();fi++)//for all faces do
{
for(int j=0;j<3;j++)//for all edges
{
if(fi->V(j)->IsS()) continue;
if(face::IsBorder(*fi,j))//found an unvisited border edge
{
he.Set(&(*fi),j,fi->V(j)); //set the face-face iterator to the current face, edge and vertex
2006-01-02 10:49:36 +01:00
std::vector<Point3x> hole; //start of a new hole
hole.push_back(fi->P(j)); // including the first vertex
numholev++;
he.v->SetS(); //set the current vertex as selected
he.NextB(); //go to the next boundary edge
while(fi->V(j) != he.v)//will we do not encounter the first boundary edge.
{
Point3x newpoint = he.v->P(); //select its vertex.
if(he.v->IsS())//check if this vertex was selected already, because then we have an additional hole.
{
//cut and paste the additional hole.
2006-01-02 10:49:36 +01:00
std::vector<Point3x> hole2;
2006-01-27 10:58:47 +01:00
int index = static_cast<int>(find(hole.begin(),hole.end(),newpoint)
- hole.begin());
for(unsigned int i=index; i<hole.size(); i++)
hole2.push_back(hole[i]);
hole.resize(index);
if(hole2.size()!=0) //annoying in degenerate cases
holes.push_back(hole2);
}
hole.push_back(newpoint);
numholev++;
he.v->SetS(); //set the current vertex as selected
he.NextB(); //go to the next boundary edge
}
holes.push_back(hole);
}
}
}
return static_cast<int>(holes.size());
}
/*
Compute the set of connected components of a given mesh
it fills a vector of pair < int , faceptr > with, for each connecteed component its size and a represnant
*/
static int ConnectedComponents(MeshType &m)
{
std::vector< std::pair<int,FacePointer> > CCV;
return ConnectedComponents(m,CCV);
}
static int ConnectedComponents(MeshType &m, std::vector< std::pair<int,FacePointer> > &CCV)
{
FaceIterator fi;
FacePointer l;
CCV.clear();
2004-06-24 10:03:59 +02:00
for(fi=m.face.begin();fi!=m.face.end();++fi)
(*fi).ClearS();
int Compindex=0;
std::stack<FacePointer> sf;
FacePointer fpt=&*(m.face.begin());
for(fi=m.face.begin();fi!=m.face.end();++fi)
{
if(!((*fi).IsD()) && !(*fi).IsS())
{
(*fi).SetS();
CCV.push_back(std::make_pair(0,&*fi));
sf.push(&*fi);
while (!sf.empty())
{
fpt=sf.top();
++CCV.back().first;
sf.pop();
for(int j=0;j<3;++j)
{
if( !face::IsBorder(*fpt,j) )
{
l=fpt->FFp(j);
if( !(*l).IsS() )
{
(*l).SetS();
sf.push(l);
}
}
}
}
Compindex++;
}
}
2010-02-24 10:55:28 +01:00
assert(int(CCV.size())==Compindex);
return Compindex;
}
2005-12-14 15:04:35 +01:00
/**
GENUS.
A topologically invariant property of a surface defined as
the largest number of non-intersecting simple closed curves that can be
drawn on the surface without separating it.
Roughly speaking, it is the number of holes in a surface.
2005-12-14 15:04:35 +01:00
The genus g of a closed surface, also called the geometric genus, is related to the
Euler characteristic by the relation $chi$ by $chi==2-2g$.
2005-12-14 15:04:35 +01:00
The genus of a connected, orientable surface is an integer representing the maximum
number of cuttings along closed simple curves without rendering the resultant
manifold disconnected. It is equal to the number of handles on it.
2005-12-14 15:04:35 +01:00
For general polyhedra the <em>Euler Formula</em> is:
2005-12-14 15:04:35 +01:00
V + F - E = 2 - 2G - B
2005-12-14 15:04:35 +01:00
where V is the number of vertices, F is the number of faces, E is the
number of edges, G is the genus and B is the number of <em>boundary polygons</em>.
2005-12-14 15:04:35 +01:00
The above formula is valid for a mesh with one single connected component.
By considering multiple connected components the formula becomes:
2005-12-14 15:04:35 +01:00
V + F - E = 2C - 2Gs - B
2005-12-14 15:04:35 +01:00
where C is the number of connected components and Gs is the sum of
the genus of all connected components.
*/
2005-12-21 14:09:03 +01:00
static int MeshGenus(MeshType &m, int numholes, int numcomponents, int count_e)
2005-12-14 15:04:35 +01:00
{
2005-12-21 14:09:03 +01:00
int V = m.vn;
2005-12-14 15:04:35 +01:00
int F = m.fn;
int E = count_e;
return -((V + F - E + numholes - 2 * numcomponents) / 2);
}
2004-06-24 10:03:59 +02:00
/**
* Check if the given mesh is regular, semi-regular or irregular.
*
* Each vertex of a \em regular mesh has valence 6 except for border vertices
* which have valence 4.
*
* A \em semi-regular mesh is derived from an irregular one applying
* 1-to-4 subdivision recursively. (not checked for now)
*
* All other meshes are \em irregular.
*/
static void IsRegularMesh(MeshType &m, bool &Regular, bool &Semiregular)
{
// This algorithm requires Vertex-Face topology
assert(m.HasVFTopology());
Regular = true;
VertexIterator vi;
// for each vertex the number of edges are count
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
{
if (!vi->IsD())
{
face::Pos<FaceType> he((*vi).VFp(), &*vi);
face::Pos<FaceType> ht = he;
int n=0;
bool border=false;
do
{
++n;
ht.NextE();
if (ht.IsBorder())
border=true;
}
while (ht != he);
if (border)
n = n/2;
if ((n != 6)&&(!border && n != 4))
{
Regular = false;
break;
}
}
}
2005-10-03 17:57:53 +02:00
if (!Regular)
Semiregular = false;
else
{
// For now we do not account for semi-regularity
Semiregular = false;
}
}
2005-10-03 17:57:53 +02:00
2005-12-16 11:54:59 +01:00
static void IsOrientedMesh(MeshType &m, bool &Oriented, bool &Orientable)
{
assert(&Oriented != &Orientable);
2005-12-19 16:13:06 +01:00
// This algorithms requires FF topology
assert(m.HasFFTopology());
2005-12-16 11:54:59 +01:00
Orientable = true;
Oriented = true;
2005-12-19 16:13:06 +01:00
// Ensure that each face is deselected
FaceIterator fi;
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
fi->ClearS();
// initialize stack
2006-01-02 10:49:36 +01:00
std::stack<FacePointer> faces;
2005-12-19 16:13:06 +01:00
// for each face of the mesh
FacePointer fp,fpaux;
int iaux;
2005-12-16 11:54:59 +01:00
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
{
2005-12-19 16:13:06 +01:00
if (!fi->IsD() && !fi->IsS())
2005-12-16 11:54:59 +01:00
{
2005-12-19 16:13:06 +01:00
// each face put in the stack is selected (and oriented)
fi->SetS();
faces.push(&(*fi));
// empty the stack
while (!faces.empty())
{
fp = faces.top();
faces.pop();
// make consistently oriented the adjacent faces
for (int j = 0; j < 3; j++)
2005-12-16 11:54:59 +01:00
{
2005-12-19 16:13:06 +01:00
// get one of the adjacent face
fpaux = fp->FFp(j);
iaux = fp->FFi(j);
2005-12-16 11:54:59 +01:00
if (!fpaux->IsD() && fpaux != fp && face::IsManifold<FaceType>(*fp, j))
2005-12-16 11:54:59 +01:00
{
2005-12-19 16:13:06 +01:00
if (!CheckOrientation(*fpaux, iaux))
{
Oriented = false;
2005-12-19 16:13:06 +01:00
if (!fpaux->IsS())
{
face::SwapEdge<FaceType,true>(*fpaux, iaux);
2005-12-19 16:13:06 +01:00
assert(CheckOrientation(*fpaux, iaux));
}
else
{
2005-12-19 16:13:06 +01:00
Orientable = false;
break;
}
2005-12-19 16:13:06 +01:00
}
// put the oriented face into the stack
2005-12-16 11:54:59 +01:00
2005-12-19 16:13:06 +01:00
if (!fpaux->IsS())
{
fpaux->SetS();
faces.push(fpaux);
}
}
2005-12-16 11:54:59 +01:00
}
2005-12-19 16:13:06 +01:00
}
2005-12-16 11:54:59 +01:00
}
2005-12-19 16:13:06 +01:00
if (!Orientable) break;
2005-12-16 11:54:59 +01:00
}
}
/// Flip the orientation of the whole mesh flipping all the faces (by swapping the first two vertices)
static void FlipMesh(MeshType &m, bool selected=false)
{
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD())
if(!selected || (*fi).IsS())
{
face::SwapEdge<FaceType,false>((*fi), 0);
if (HasPerWedgeTexCoord(m))
2008-04-24 07:04:25 +02:00
std::swap((*fi).WT(0),(*fi).WT(1));
}
}
static int RemoveTVertexByFlip(MeshType &m, float threshold=40, bool repeat=true)
{
assert(m.HasFFTopology());
2009-03-12 16:56:31 +01:00
assert(m.HasPerVertexMark());
//Counters for logging and convergence
int count, total = 0;
do {
2009-03-12 16:56:31 +01:00
tri::UpdateTopology<MeshType>::FaceFace(m);
tri::UnMarkAll(m);
count = 0;
//detection stage
for(unsigned int index = 0 ; index < m.face.size(); ++index )
{
2009-03-12 16:56:31 +01:00
FacePointer f = &(m.face[index]); float sides[3]; Point3<float> dummy;
sides[0] = Distance(f->P(0), f->P(1)); sides[1] = Distance(f->P(1), f->P(2)); sides[2] = Distance(f->P(2), f->P(0));
int i = std::find(sides, sides+3, std::max( std::max(sides[0],sides[1]), sides[2])) - (sides);
if( tri::IsMarked(m,f->V2(i) )) continue;
if( PSDist(f->P2(i),f->P(i),f->P1(i),dummy)*threshold <= sides[i] )
{
tri::Mark(m,f->V2(i));
2009-03-12 16:56:31 +01:00
if(face::CheckFlipEdge<FaceType>( *f, i )) {
// Check if EdgeFlipping improves quality
2009-03-12 16:56:31 +01:00
FacePointer g = f->FFp(i); int k = f->FFi(i);
Triangle3<float> t1(f->P(i), f->P1(i), f->P2(i)), t2(g->P(k), g->P1(k), g->P2(k)),
t3(f->P(i), g->P2(k), f->P2(i)), t4(g->P(k), f->P2(i), g->P2(k));
if ( std::min( t1.QualityFace(), t2.QualityFace() ) < std::min( t3.QualityFace(), t4.QualityFace() ))
{
2009-03-12 16:56:31 +01:00
face::FlipEdge<FaceType>( *f, i );
++count; ++total;
}
}
}
}
2009-03-12 16:56:31 +01:00
tri::UpdateNormals<MeshType>::PerFace(m);
}
while( repeat && count );
return total;
}
static int RemoveTVertexByCollapse(MeshType &m, float threshold=40, bool repeat=true)
{
2010-03-03 00:17:15 +01:00
assert(tri::HasPerVertexMark(m));
//Counters for logging and convergence
int count, total = 0;
do {
tri::UnMarkAll(m);
count = 0;
//detection stage
for(unsigned int index = 0 ; index < m.face.size(); ++index )
{
2009-03-12 16:56:31 +01:00
FacePointer f = &(m.face[index]); float sides[3]; Point3<float> dummy;
sides[0] = Distance(f->P(0), f->P(1)); sides[1] = Distance(f->P(1), f->P(2)); sides[2] = Distance(f->P(2), f->P(0));
int i = std::find(sides, sides+3, std::max( std::max(sides[0],sides[1]), sides[2])) - (sides);
if( tri::IsMarked(m,f->V2(i) )) continue;
if( PSDist(f->P2(i),f->P(i),f->P1(i),dummy)*threshold <= sides[i] )
{
tri::Mark(m,f->V2(i));
int j = Distance(dummy,f->P(i))<Distance(dummy,f->P1(i))?i:(i+1)%3;
f->P2(i) = f->P(j); tri::Mark(m,f->V(j));
++count; ++total;
}
}
2009-03-12 16:56:31 +01:00
tri::Clean<MeshType>::RemoveDuplicateVertex(m);
tri::Allocator<MeshType>::CompactFaceVector(m);
tri::Allocator<MeshType>::CompactVertexVector(m);
}
while( repeat && count );
return total;
}
static bool SelfIntersections(MeshType &m, std::vector<FaceType*> &ret)
{
//assert(FaceType::HasMark()); // Needed by the UG
assert(HasPerFaceMark(m));// Needed by the UG
Box3< ScalarType> bbox;
TriMeshGrid gM;
2005-12-16 14:13:44 +01:00
ret.clear();
FaceIterator fi;
2005-12-16 14:13:44 +01:00
int referredBit = FaceType::NewBitFlag();
2005-12-16 14:13:44 +01:00
for(fi=m.face.begin();fi!=m.face.end();++fi)
(*fi).ClearUserBit(referredBit);
std::vector<FaceType*> inBox;
gM.Set(m.face.begin(),m.face.end());
2006-02-01 16:27:00 +01:00
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
{
2005-12-16 14:13:44 +01:00
(*fi).SetUserBit(referredBit);
(*fi).GetBBox(bbox);
vcg::tri::GetInBoxFace(m, gM, bbox,inBox);
2005-12-16 14:13:44 +01:00
bool Intersected=false;
2006-02-28 17:51:29 +01:00
typename std::vector<FaceType*>::iterator fib;
2005-12-16 14:13:44 +01:00
for(fib=inBox.begin();fib!=inBox.end();++fib)
{
if(!(*fib)->IsUserBit(referredBit) && (*fib != &*fi) )
if(TestIntersection(&*fi,*fib)){
ret.push_back(*fib);
if(!Intersected) {
ret.push_back(&*fi);
Intersected=true;
}
}
}
inBox.clear();
}
2005-12-16 14:13:44 +01:00
FaceType::DeleteBitFlag(referredBit);
return (ret.size()>0);
}
2006-11-27 11:36:35 +01:00
/**
This function simply test that the vn and fn counters be consistent with the size of the containers and the number of deleted simplexes.
*/
static bool IsSizeConsistent(MeshType &m)
{
int DeletedVertexNum=0;
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if((*vi).IsD()) DeletedVertexNum++;
int DeletedFaceNum=0;
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if((*fi).IsD()) DeletedFaceNum++;
2010-02-24 10:55:28 +01:00
if(size_t(m.vn+DeletedVertexNum) != m.vert.size()) return false;
if(size_t(m.fn+DeletedFaceNum) != m.face.size()) return false;
2006-11-27 11:36:35 +01:00
return true;
}
/**
This function simply test that all the faces have a consistent face-face topology relation.
useful for checking that a topology modifying algorithm does not mess something.
*/
static bool IsFFAdjacencyConsistent(MeshType &m)
{
if(!HasFFAdjacency(m)) return false;
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{
for(int i=0;i<3;++i)
if(!FFCorrectness(*fi, i)) return false;
}
return true;
}
2008-03-06 09:37:16 +01:00
/**
This function simply test that a mesh has some reasonable tex coord.
*/
static bool HasConsistentPerWedgeTexCoord(MeshType &m)
{
if(!HasPerWedgeTexCoord(m)) return false;
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{ FaceType &f=(*fi);
if( ! ( (f.WT(0).N() == f.WT(1).N()) && (f.WT(0).N() == (*fi).WT(2).N()) ) )
return false; // all the vertices must have the same index.
if((*fi).WT(0).N() <0) return false; // no undefined texture should be allowed
}
return true;
}
/**
Simple check that there are no face with all collapsed tex coords.
*/
static bool HasZeroTexCoordFace(MeshType &m)
{
if(!HasPerWedgeTexCoord(m)) return false;
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{
if( (*fi).WT(0).P() == (*fi).WT(1).P() && (*fi).WT(0).P() == (*fi).WT(2).P() ) return false;
}
return true;
}
//test real intersection between faces
static bool TestIntersection(FaceType *f0,FaceType *f1)
{
assert((!f0->IsD())&&(!f1->IsD()));
//no adiacent faces
if ( (f0!=f1) && (!ShareEdge(f0,f1))
&& (!ShareVertex(f0,f1)) )
return (vcg::Intersection<FaceType>((*f0),(*f1)));
return false;
}
//control if two faces share an edge
static bool ShareEdge(FaceType *f0,FaceType *f1)
{
assert((!f0->IsD())&&(!f1->IsD()));
for (int i=0;i<3;i++)
if (f0->FFp(i)==f1)
return (true);
return(false);
}
//control if two faces share a vertex
static bool ShareVertex(FaceType *f0,FaceType *f1)
{
assert((!f0->IsD())&&(!f1->IsD()));
for (int i=0;i<3;i++)
for (int j=0;j<3;j++)
if (f0->V(i)==f1->V(j))
return (true);
return(false);
}
/**
This function merge all the vertices that are closer than the given radius
*/
static int MergeCloseVertex(MeshType &m, const ScalarType radius)
{
typedef vcg::SpatialHashTable<VertexType, ScalarType> SampleSHT;
SampleSHT sht;
tri::VertTmark<MeshType> markerFunctor;
typedef vcg::vertex::PointDistanceFunctor<ScalarType> VDistFunct;
std::vector<VertexType*> closests;
int mergedCnt=0;
Point3f closestPt;
sht.Set(m.vert.begin(), m.vert.end());
UpdateFlags<MeshType>::VertexClearV(m);
for(VertexIterator viv = m.vert.begin(); viv!= m.vert.end(); ++viv)
if(!(*viv).IsD() && !(*viv).IsV())
{
(*viv).SetV();
Point3f p = viv->cP();
Box3f bb(p-Point3f(radius,radius,radius),p+Point3f(radius,radius,radius));
GridGetInBox(sht, markerFunctor, bb, closests);
// qDebug("Vertex %i has %i closest", &*viv - &*m.vert.begin(),closests.size());
2010-02-24 10:55:28 +01:00
for(size_t i=0; i<closests.size(); ++i)
{
float dist = Distance(p,closests[i]->cP());
if(dist < radius && !closests[i]->IsV())
{
mergedCnt++;
closests[i]->SetV();
closests[i]->P()=p;
}
}
}
RemoveDuplicateVertex(m,true);
return mergedCnt;
}
static std::pair<int,int> RemoveSmallConnectedComponentsSize(MeshType &m, int maxCCSize)
{
std::vector< std::pair<int, typename MeshType::FacePointer> > CCV;
int TotalCC=ConnectedComponents(m, CCV);
int DeletedCC=0;
ConnectedIterator<MeshType> ci;
for(unsigned int i=0;i<CCV.size();++i)
{
std::vector<typename MeshType::FacePointer> FPV;
if(CCV[i].first<maxCCSize)
{
DeletedCC++;
for(ci.start(m,CCV[i].second);!ci.completed();++ci)
FPV.push_back(*ci);
typename std::vector<typename MeshType::FacePointer>::iterator fpvi;
for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi)
Allocator<MeshType>::DeleteFace(m,(**fpvi));
}
}
return std::make_pair<int,int>(TotalCC,DeletedCC);
}
/// Remove the connected components smaller than a given diameter
// it returns a pair with the number of connected components and the number of deleted ones.
static std::pair<int,int> RemoveSmallConnectedComponentsDiameter(MeshType &m, ScalarType maxDiameter)
{
std::vector< std::pair<int, typename MeshType::FacePointer> > CCV;
int TotalCC=ConnectedComponents(m, CCV);
int DeletedCC=0;
tri::ConnectedIterator<MeshType> ci;
for(unsigned int i=0;i<CCV.size();++i)
{
Box3f bb;
std::vector<typename MeshType::FacePointer> FPV;
for(ci.start(m,CCV[i].second);!ci.completed();++ci)
{
FPV.push_back(*ci);
bb.Add((*ci)->P(0));
bb.Add((*ci)->P(1));
bb.Add((*ci)->P(2));
}
if(bb.Diag()<maxDiameter)
{
DeletedCC++;
typename std::vector<typename MeshType::FacePointer>::iterator fpvi;
for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi)
tri::Allocator<MeshType>::DeleteFace(m,(**fpvi));
}
}
return std::make_pair<int,int>(TotalCC,DeletedCC);
}
}; // end class
/*@}*/
} //End Namespace Tri
2004-06-24 10:03:59 +02:00
} // End Namespace vcg
#endif