vcglib/vcg/complex/algorithms/create/platonic.h

1328 lines
46 KiB
C
Raw Normal View History

2011-04-01 18:25:49 +02:00
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
2011-04-01 18:25:49 +02:00
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
2011-04-01 18:25:49 +02:00
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_PLATONIC
#define __VCGLIB_PLATONIC
#include<vcg/math/base.h>
#include<vcg/complex/algorithms/refine.h>
#include<vcg/complex/algorithms/update/position.h>
#include<vcg/complex/algorithms/update/bounding.h>
2012-10-12 00:45:21 +02:00
#include<vcg/complex/algorithms/clean.h>
#include<vcg/complex/algorithms/polygon_support.h>
#include<vcg/complex/algorithms/smooth.h>
2011-04-01 18:25:49 +02:00
namespace vcg {
namespace tri {
/** \addtogroup trimesh */
//@{
/**
A set of functions that builds meshes
2011-04-01 18:25:49 +02:00
that represent surfaces of platonic solids,
and other simple shapes.
2011-04-01 18:25:49 +02:00
The 1st parameter is usually the mesh that will
be filled with the solid.
*/
2011-04-01 18:25:49 +02:00
template <class TetraMeshType>
void Tetrahedron(TetraMeshType &in)
{
typedef typename TetraMeshType::CoordType CoordType;
typedef typename TetraMeshType::VertexPointer VertexPointer;
typedef typename TetraMeshType::VertexIterator VertexIterator;
typedef typename TetraMeshType::FaceIterator FaceIterator;
in.Clear();
Allocator<TetraMeshType>::AddVertices(in,4);
Allocator<TetraMeshType>::AddFaces(in,4);
VertexPointer ivp[4];
VertexIterator vi=in.vert.begin();
ivp[0]=&*vi;(*vi).P()=CoordType ( 1.0, 1.0, 1.0); ++vi;
ivp[1]=&*vi;(*vi).P()=CoordType (-1.0, 1.0,-1.0); ++vi;
ivp[2]=&*vi;(*vi).P()=CoordType (-1.0,-1.0, 1.0); ++vi;
ivp[3]=&*vi;(*vi).P()=CoordType ( 1.0,-1.0,-1.0);
2011-04-01 18:25:49 +02:00
FaceIterator fi=in.face.begin();
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[2]; ++fi;
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[3]; ++fi;
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[3]; (*fi).V(2)=ivp[1]; ++fi;
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[1];
2011-04-01 18:25:49 +02:00
}
/// builds a Dodecahedron,
/// (each pentagonal face is composed by 5 triangles)
2011-04-01 18:25:49 +02:00
template <class DodMeshType>
void Dodecahedron(DodMeshType & in)
{
typedef DodMeshType MeshType;
2011-04-01 18:25:49 +02:00
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::ScalarType ScalarType;
const int N_penta=12;
const int N_points=62;
int penta[N_penta*3*3]=
{20,11, 18, 18, 11, 8, 8, 11, 4,
13,23, 4, 4, 23, 8, 8, 23, 16,
13, 4, 30, 30, 4, 28, 28, 4, 11,
16,34, 8, 8, 34, 18, 18, 34, 36,
11,20, 28, 28, 20, 45, 45, 20, 38,
2011-04-01 18:25:49 +02:00
13,30, 23, 23, 30, 41, 41, 30, 47,
16,23, 34, 34, 23, 50, 50, 23, 41,
20,18, 38, 38, 18, 52, 52, 18, 36,
30,28, 47, 47, 28, 56, 56, 28, 45,
50,60, 34, 34, 60, 36, 36, 60, 52,
45,38, 56, 56, 38, 60, 60, 38, 52,
2011-04-01 18:25:49 +02:00
50,41, 60, 60, 41, 56, 56, 41, 47 };
//A B E D C
const ScalarType p=(1.0 + math::Sqrt(5.0)) / 2.0;
const ScalarType p2=p*p;
const ScalarType p3=p*p*p;
ScalarType vv[N_points*3]=
{
0, 0, 2*p2, p2, 0, p3, p, p2, p3,
0, p, p3, -p, p2, p3, -p2, 0, p3,
2011-04-01 18:25:49 +02:00
-p, -p2, p3, 0, -p, p3, p, -p2, p3,
p3, p, p2, p2, p2, p2, 0, p3, p2,
-p2, p2, p2, -p3, p, p2, -p3, -p, p2,
-p2, -p2, p2, 0, -p3, p2, p2, -p2, p2,
p3, -p, p2, p3, 0, p, p2, p3, p,
-p2, p3, p, -p3, 0, p, -p2, -p3, p,
p2, -p3, p, 2*p2, 0, 0, p3, p2, 0,
p, p3, 0, 0, 2*p2, 0, -p, p3, 0,
-p3, p2, 0, -2*p2, 0, 0, -p3, -p2, 0,
-p, -p3, 0, 0, -2*p2, 0, p, -p3, 0,
p3, -p2, 0, p3, 0, -p, p2, p3, -p,
-p2, p3, -p, -p3, 0, -p, -p2, -p3, -p,
p2, -p3, -p, p3, p, -p2, p2, p2, -p2,
0, p3, -p2, -p2, p2, -p2, -p3, p, -p2,
-p3, -p, -p2, -p2, -p2, -p2, 0, -p3, -p2,
p2, -p2, -p2, p3, -p, -p2, p2, 0, -p3,
p, p2, -p3, 0, p, -p3, -p, p2, -p3,
-p2, 0, -p3, -p, -p2, -p3, 0, -p, -p3,
2011-04-01 18:25:49 +02:00
p, -p2, -p3, 0, 0, -2*p2
};
in.Clear();
//in.face.clear();
Allocator<DodMeshType>::AddVertices(in,20+12);
2011-04-01 18:25:49 +02:00
Allocator<DodMeshType>::AddFaces(in, 5*12); // five pentagons, each made by 5 tri
int h,i,j,m=0;
bool used[N_points];
for (i=0; i<N_points; i++) used[i]=false;
2011-04-01 18:25:49 +02:00
int reindex[20+12 *10];
ScalarType xx,yy,zz, sx,sy,sz;
2011-04-01 18:25:49 +02:00
int order[5]={0,1,8,6,2};
int added[12];
2011-04-01 18:25:49 +02:00
VertexIterator vi=in.vert.begin();
2011-04-01 18:25:49 +02:00
for (i=0; i<12; i++) {
sx=sy=sz=0;
for (int j=0; j<5; j++) {
h= penta[ i*9 + order[j] ]-1;
xx=vv[h*3];yy=vv[h*3+1];zz=vv[h*3+2]; sx+=xx; sy+=yy; sz+=zz;
if (!used[h]) {
(*vi).P()=CoordType( xx, yy, zz ); vi++;
used[h]=true;
reindex[ h ] = m++;
}
}
(*vi).P()=CoordType( sx/5.0, sy/5.0, sz/5.0 ); vi++;
added[ i ] = m++;
}
2011-04-01 18:25:49 +02:00
std::vector<VertexPointer> index(in.vn);
for(j=0,vi=in.vert.begin();j<in.vn;++j,++vi) index[j] = &(*vi);
2011-04-01 18:25:49 +02:00
FaceIterator fi=in.face.begin();
for (i=0; i<12; i++) {
for (j=0; j<5; j++){
(*fi).V(0)=index[added[i] ];
(*fi).V(1)=index[reindex[penta[i*9 + order[j ] ] -1 ] ];
(*fi).V(2)=index[reindex[penta[i*9 + order[(j+1)%5] ] -1 ] ];
if (HasPerFaceFlags(in)) {
// tag faux edges
(*fi).SetF(0);
(*fi).SetF(2);
}
fi++;
}
}
2011-04-01 18:25:49 +02:00
}
template <class OctMeshType>
void Octahedron(OctMeshType &in)
{
typedef OctMeshType MeshType;
2011-04-01 18:25:49 +02:00
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::FaceIterator FaceIterator;
in.Clear();
Allocator<OctMeshType>::AddVertices(in,6);
Allocator<OctMeshType>::AddFaces(in,8);
VertexPointer ivp[6];
VertexIterator vi=in.vert.begin();
ivp[0]=&*vi;(*vi).P()=CoordType ( 1, 0, 0); ++vi;
ivp[1]=&*vi;(*vi).P()=CoordType ( 0, 1, 0); ++vi;
ivp[2]=&*vi;(*vi).P()=CoordType ( 0, 0, 1); ++vi;
ivp[3]=&*vi;(*vi).P()=CoordType (-1, 0, 0); ++vi;
ivp[4]=&*vi;(*vi).P()=CoordType ( 0,-1, 0); ++vi;
ivp[5]=&*vi;(*vi).P()=CoordType ( 0, 0,-1);
2011-04-01 18:25:49 +02:00
FaceIterator fi=in.face.begin();
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[2]; ++fi;
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[4]; ++fi;
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[4]; (*fi).V(2)=ivp[5]; ++fi;
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[5]; (*fi).V(2)=ivp[1]; ++fi;
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[5]; ++fi;
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[5]; (*fi).V(2)=ivp[4]; ++fi;
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[4]; (*fi).V(2)=ivp[2]; ++fi;
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[1];
2011-04-01 18:25:49 +02:00
}
template <class IcoMeshType>
void Icosahedron(IcoMeshType &in)
{
typedef IcoMeshType MeshType;
2011-04-01 18:25:49 +02:00
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::FaceIterator FaceIterator;
ScalarType L=ScalarType((math::Sqrt(5.0)+1.0)/2.0);
CoordType vv[12]={
CoordType ( 0, L, 1),
CoordType ( 0, L,-1),
CoordType ( 0,-L, 1),
CoordType ( 0,-L,-1),
2011-04-01 18:25:49 +02:00
CoordType ( L, 1, 0),
CoordType ( L,-1, 0),
CoordType (-L, 1, 0),
CoordType (-L,-1, 0),
2011-04-01 18:25:49 +02:00
CoordType ( 1, 0, L),
CoordType (-1, 0, L),
CoordType ( 1, 0,-L),
CoordType (-1, 0,-L)
};
2011-04-01 18:25:49 +02:00
int ff[20][3]={
{1,0,4},{0,1,6},{2,3,5},{3,2,7},
{4,5,10},{5,4,8},{6,7,9},{7,6,11},
{8,9,2},{9,8,0},{10,11,1},{11,10,3},
{0,8,4},{0,6,9},{1,4,10},{1,11,6},
{2,5,8},{2,9,7},{3,10,5},{3,7,11}
};
2011-04-01 18:25:49 +02:00
in.Clear();
Allocator<IcoMeshType>::AddVertices(in,12);
Allocator<IcoMeshType>::AddFaces(in,20);
VertexPointer ivp[12];
VertexIterator vi;
int i;
for(i=0,vi=in.vert.begin();vi!=in.vert.end();++i,++vi){
(*vi).P()=vv[i];
ivp[i]=&*vi;
2011-04-01 18:25:49 +02:00
}
FaceIterator fi;
for(i=0,fi=in.face.begin();fi!=in.face.end();++i,++fi){
(*fi).V(0)=ivp[ff[i][0]];
(*fi).V(1)=ivp[ff[i][1]];
(*fi).V(2)=ivp[ff[i][2]];
}
2011-04-01 18:25:49 +02:00
}
template <class MeshType>
void Hexahedron(MeshType &in)
{
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::FaceIterator FaceIterator;
in.Clear();
Allocator<MeshType>::AddVertices(in,8);
Allocator<MeshType>::AddFaces(in,12);
VertexPointer ivp[8];
VertexIterator vi=in.vert.begin();
ivp[7]=&*vi;(*vi).P()=CoordType (-1,-1,-1); ++vi;
ivp[6]=&*vi;(*vi).P()=CoordType ( 1,-1,-1); ++vi;
ivp[5]=&*vi;(*vi).P()=CoordType (-1, 1,-1); ++vi;
ivp[4]=&*vi;(*vi).P()=CoordType ( 1, 1,-1); ++vi;
ivp[3]=&*vi;(*vi).P()=CoordType (-1,-1, 1); ++vi;
ivp[2]=&*vi;(*vi).P()=CoordType ( 1,-1, 1); ++vi;
ivp[1]=&*vi;(*vi).P()=CoordType (-1, 1, 1); ++vi;
ivp[0]=&*vi;(*vi).P()=CoordType ( 1, 1, 1);
2011-04-01 18:25:49 +02:00
FaceIterator fi=in.face.begin();
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[2]; ++fi;
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[1]; ++fi;
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[4]; ++fi;
(*fi).V(0)=ivp[6]; (*fi).V(1)=ivp[4]; (*fi).V(2)=ivp[2]; ++fi;
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[4]; (*fi).V(2)=ivp[1]; ++fi;
(*fi).V(0)=ivp[5]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[4]; ++fi;
(*fi).V(0)=ivp[7]; (*fi).V(1)=ivp[5]; (*fi).V(2)=ivp[6]; ++fi;
(*fi).V(0)=ivp[4]; (*fi).V(1)=ivp[6]; (*fi).V(2)=ivp[5]; ++fi;
(*fi).V(0)=ivp[7]; (*fi).V(1)=ivp[6]; (*fi).V(2)=ivp[3]; ++fi;
(*fi).V(0)=ivp[2]; (*fi).V(1)=ivp[3]; (*fi).V(2)=ivp[6]; ++fi;
(*fi).V(0)=ivp[7]; (*fi).V(1)=ivp[3]; (*fi).V(2)=ivp[5]; ++fi;
(*fi).V(0)=ivp[1]; (*fi).V(1)=ivp[5]; (*fi).V(2)=ivp[3];
if (HasPerFaceFlags(in)) {
2011-04-01 18:25:49 +02:00
FaceIterator fi=in.face.begin();
for (int k=0; k<12; k++) {
(*fi).SetF(1); fi++;
}
}
}
template <class MeshType>
void Square(MeshType &in)
{
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::FaceIterator FaceIterator;
in.Clear();
Allocator<MeshType>::AddVertices(in,4);
Allocator<MeshType>::AddFaces(in,2);
VertexPointer ivp[4];
VertexIterator vi=in.vert.begin();
ivp[0]=&*vi;(*vi).P()=CoordType ( 1, 0, 0); ++vi;
ivp[1]=&*vi;(*vi).P()=CoordType ( 0, 1, 0); ++vi;
ivp[2]=&*vi;(*vi).P()=CoordType (-1, 0, 0); ++vi;
ivp[3]=&*vi;(*vi).P()=CoordType ( 0,-1, 0);
2011-04-01 18:25:49 +02:00
FaceIterator fi=in.face.begin();
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[2]; ++fi;
(*fi).V(0)=ivp[2]; (*fi).V(1)=ivp[3]; (*fi).V(2)=ivp[0];
2011-04-01 18:25:49 +02:00
if (HasPerFaceFlags(in)) {
2011-04-01 18:25:49 +02:00
FaceIterator fi=in.face.begin();
for (int k=0; k<2; k++) {
(*fi).SetF(2); fi++;
}
}
}
template <class MeshType>
void SphericalCap(MeshType &in, float angleRad, const int subdiv = 3 )
{
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexIterator VertexIterator;
in.Clear();
tri::Allocator<MeshType>::AddVertex(in,CoordType(0,0,0));
for(int i=0;i<6;++i)
tri::Allocator<MeshType>::AddVertex(in,CoordType(cos(math::ToRad(i*60.0)),sin(math::ToRad(i*60.0)),0));
for(int i=0;i<6;++i)
tri::Allocator<MeshType>::AddFace(in,&(in.vert[0]),&(in.vert[1+i]),&(in.vert[1+(i+1)%6]));
tri::UpdateTopology<MeshType>::FaceFace(in);
for(int i=0;i<subdiv;++i)
{
tri::Refine(in, MidPoint<MeshType>(&in));
tri::UpdateFlags<MeshType>::FaceBorderFromFF(in);
tri::UpdateFlags<MeshType>::VertexBorderFromFaceBorder(in);
for(int i=0;i<in.vn;++i)
if(in.vert[i].IsB())
in.vert[i].P().Normalize();
tri::UpdateSelection<MeshType>::VertexFromBorderFlag(in);
tri::UpdateSelection<MeshType>::VertexInvert(in);
tri::Smooth<MeshType>::VertexCoordLaplacian(in,10,true);
}
float angleHalfRad = angleRad /2.0f;
float width = sin(angleHalfRad);
tri::UpdatePosition<MeshType>::Scale(in,width);
tri::Allocator<MeshType>::CompactEveryVector(in);
for(VertexIterator vi=in.vert.begin(); vi!=in.vert.end();++vi)
{
float cosVi = vi->P().Norm();
float angVi = asin (cosVi);
vi->P()[2] = cos(angVi) - cos(angleHalfRad);
}
}
2011-04-01 18:25:49 +02:00
// this function build a sphere starting from a eventually not empty mesh.
// If the mesh is not empty it is 'spherified' and used as base for the subdivision process.
// otherwise an icosahedron is used.
template <class MeshType>
void Sphere(MeshType &in, const int subdiv = 3 )
{
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::FaceIterator FaceIterator;
if(in.vn==0 && in.fn==0) Icosahedron(in);
2011-04-01 18:25:49 +02:00
for(VertexIterator vi = in.vert.begin(); vi!=in.vert.end();++vi)
vi->P().Normalize();
2011-04-01 18:25:49 +02:00
for(int i = 0 ; i < subdiv; ++i)
{
MeshType newM;
for(FaceIterator fi=in.face.begin();fi!=in.face.end();++fi)
{
CoordType me01 = (fi->P(0)+fi->P(1))/2.0;
CoordType me12 = (fi->P(1)+fi->P(2))/2.0;
CoordType me20 = (fi->P(2)+fi->P(0))/2.0;
tri::Allocator<MeshType>::AddFace(newM,me01,me12,me20);
tri::Allocator<MeshType>::AddFace(newM,fi->P(0),me01,me20);
tri::Allocator<MeshType>::AddFace(newM,fi->P(1),me12,me01);
tri::Allocator<MeshType>::AddFace(newM,fi->P(2),me20,me12);
}
tri::Clean<MeshType>::RemoveDuplicateVertex(newM);
tri::Append<MeshType,MeshType>::MeshCopy(in,newM);
2011-04-01 18:25:49 +02:00
for(VertexIterator vi = in.vert.begin(); vi != in.vert.end(); ++vi)
vi->P().Normalize();
}
2011-04-01 18:25:49 +02:00
}
/// r1 = raggio 1, r2 = raggio2, h = altezza (asse y)
2011-04-01 18:25:49 +02:00
template <class MeshType>
void Cone( MeshType& in,
const typename MeshType::ScalarType r1,
const typename MeshType::ScalarType r2,
const typename MeshType::ScalarType h,
const int SubDiv = 36 )
2011-04-01 18:25:49 +02:00
{
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::FaceIterator FaceIterator;
int i,b1,b2;
in.Clear();
int VN,FN;
if(r1==0 || r2==0) {
2011-04-01 18:25:49 +02:00
VN=SubDiv+2;
FN=SubDiv*2;
} else {
2011-04-01 18:25:49 +02:00
VN=SubDiv*2+2;
FN=SubDiv*4;
}
2011-04-01 18:25:49 +02:00
Allocator<MeshType>::AddVertices(in,VN);
Allocator<MeshType>::AddFaces(in,FN);
VertexPointer *ivp = new VertexPointer[VN];
2011-04-01 18:25:49 +02:00
VertexIterator vi=in.vert.begin();
ivp[0]=&*vi;(*vi).P()=CoordType ( 0,-h/2.0,0 ); ++vi;
ivp[1]=&*vi;(*vi).P()=CoordType ( 0, h/2.0,0 ); ++vi;
b1 = b2 = 2;
2011-04-01 18:25:49 +02:00
int cnt=2;
if(r1!=0)
{
2011-04-01 18:25:49 +02:00
for(i=0;i<SubDiv;++i)
{
2011-04-01 18:25:49 +02:00
double a = math::ToRad(i*360.0/SubDiv);
ivp[cnt]=&*vi; (*vi).P()= CoordType(r1*cos(a), -h/2.0, r1*sin(a)); ++vi;++cnt;
}
2011-04-01 18:25:49 +02:00
b2 += SubDiv;
}
2011-04-01 18:25:49 +02:00
if(r2!=0)
{
for(i=0;i<SubDiv;++i)
{
double a = math::ToRad(i*360.0/SubDiv);
ivp[cnt]=&*vi; (*vi).P()= CoordType( r2*cos(a), h/2.0, r2*sin(a)); ++vi;++cnt;
}
}
2011-04-01 18:25:49 +02:00
FaceIterator fi=in.face.begin();
2011-04-01 18:25:49 +02:00
if(r1!=0) for(i=0;i<SubDiv;++i,++fi) {
(*fi).V(0)=ivp[0];
(*fi).V(1)=ivp[b1+i];
2011-04-01 18:25:49 +02:00
(*fi).V(2)=ivp[b1+(i+1)%SubDiv];
}
2011-04-01 18:25:49 +02:00
if(r2!=0) for(i=0;i<SubDiv;++i,++fi) {
(*fi).V(0)=ivp[1];
(*fi).V(2)=ivp[b2+i];
2011-04-01 18:25:49 +02:00
(*fi).V(1)=ivp[b2+(i+1)%SubDiv];
}
2011-04-01 18:25:49 +02:00
if(r1==0) for(i=0;i<SubDiv;++i,++fi)
{
(*fi).V(0)=ivp[0];
(*fi).V(1)=ivp[b2+i];
(*fi).V(2)=ivp[b2+(i+1)%SubDiv];
}
2011-04-01 18:25:49 +02:00
if(r2==0) for(i=0;i<SubDiv;++i,++fi){
(*fi).V(0)=ivp[1];
(*fi).V(2)=ivp[b1+i];
2011-04-01 18:25:49 +02:00
(*fi).V(1)=ivp[b1+(i+1)%SubDiv];
}
if(r1!=0 && r2!=0)for(i=0;i<SubDiv;++i)
{
(*fi).V(0)=ivp[b1+i];
(*fi).V(1)=ivp[b2+i];
(*fi).V(2)=ivp[b2+(i+1)%SubDiv];
++fi;
(*fi).V(0)=ivp[b1+i];
(*fi).V(1)=ivp[b2+(i+1)%SubDiv];
(*fi).V(2)=ivp[b1+(i+1)%SubDiv];
++fi;
}
2011-04-01 18:25:49 +02:00
}
template <class MeshType>
void OrientedCone(MeshType & m,
const typename MeshType::CoordType origin,
const typename MeshType::CoordType end,
const typename MeshType::ScalarType r1,
const typename MeshType::ScalarType r2,
const int SubDiv = 36 )
{
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef Matrix44<typename MeshType::ScalarType> Matrix44x;
Cone(m,r1,r2,Distance(origin,end),SubDiv);
tri::UpdatePosition<MeshType>::Translate(m,CoordType(0,Distance(origin,end)/2,0));
CoordType norm = end-origin;
ScalarType angleRad = Angle(CoordType(0,1,0),norm);
const ScalarType Delta= 0.000000001;
Matrix44x rotM;
if (fabs(angleRad)<Delta)
rotM.SetIdentity();
else
if (fabs(angleRad-M_PI)<Delta)
{
CoordType axis = CoordType(0,0,1)^norm;
rotM.SetRotateRad(angleRad,axis);
}
else
{
CoordType axis = CoordType(0,1,0)^norm;
rotM.SetRotateRad(angleRad,axis);
}
tri::UpdatePosition<MeshType>::Matrix(m,rotM);
tri::UpdatePosition<MeshType>::Translate(m,origin);
}
2011-04-01 18:25:49 +02:00
template <class MeshType >
void Box(MeshType &in, const typename MeshType::BoxType & bb )
{
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::FaceIterator FaceIterator;
in.Clear();
Allocator<MeshType>::AddVertices(in,8);
VertexPointer ivp[8];
VertexIterator vi=in.vert.begin();
ivp[0]=&*vi;(*vi).P()=CoordType (bb.min[0],bb.min[1],bb.min[2]); ++vi;
ivp[1]=&*vi;(*vi).P()=CoordType (bb.max[0],bb.min[1],bb.min[2]); ++vi;
ivp[2]=&*vi;(*vi).P()=CoordType (bb.min[0],bb.max[1],bb.min[2]); ++vi;
ivp[3]=&*vi;(*vi).P()=CoordType (bb.max[0],bb.max[1],bb.min[2]); ++vi;
ivp[4]=&*vi;(*vi).P()=CoordType (bb.min[0],bb.min[1],bb.max[2]); ++vi;
ivp[5]=&*vi;(*vi).P()=CoordType (bb.max[0],bb.min[1],bb.max[2]); ++vi;
ivp[6]=&*vi;(*vi).P()=CoordType (bb.min[0],bb.max[1],bb.max[2]); ++vi;
ivp[7]=&*vi;(*vi).P()=CoordType (bb.max[0],bb.max[1],bb.max[2]);
2011-04-01 18:25:49 +02:00
Allocator<MeshType>::AddFace(in,ivp[2],ivp[1],ivp[0]);
Allocator<MeshType>::AddFace(in,ivp[1],ivp[2],ivp[3]);
Allocator<MeshType>::AddFace(in,ivp[4],ivp[2],ivp[0]);
Allocator<MeshType>::AddFace(in,ivp[2],ivp[4],ivp[6]);
Allocator<MeshType>::AddFace(in,ivp[1],ivp[4],ivp[0]);
Allocator<MeshType>::AddFace(in,ivp[4],ivp[1],ivp[5]);
Allocator<MeshType>::AddFace(in,ivp[6],ivp[5],ivp[7]);
Allocator<MeshType>::AddFace(in,ivp[5],ivp[6],ivp[4]);
Allocator<MeshType>::AddFace(in,ivp[3],ivp[6],ivp[7]);
Allocator<MeshType>::AddFace(in,ivp[6],ivp[3],ivp[2]);
Allocator<MeshType>::AddFace(in,ivp[5],ivp[3],ivp[7]);
Allocator<MeshType>::AddFace(in,ivp[3],ivp[5],ivp[1]);
if (HasPerFaceFlags(in)) {
2011-04-01 18:25:49 +02:00
FaceIterator fi=in.face.begin();
for (int k=0; k<12; k++) {
(*fi).SetF(0); fi++;
2011-04-01 18:25:49 +02:00
}
}
}
2012-10-12 00:45:21 +02:00
// Torus
template <class MeshType>
void Torus(MeshType &m, float hRingRadius, float vRingRadius, int hRingDiv=24, int vRingDiv=12 )
2012-10-12 00:45:21 +02:00
{
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
typedef Matrix44<ScalarType> Matrix44x;
2012-10-12 00:45:21 +02:00
m.Clear();
ScalarType angleStepV = (2.0f*M_PI)/vRingDiv;
ScalarType angleStepH = (2.0f*M_PI)/hRingDiv;
2012-10-12 00:45:21 +02:00
Allocator<MeshType>::AddVertices(m,(vRingDiv+1)*(hRingDiv+1));
2012-10-15 14:49:17 +02:00
for(int i=0;i<hRingDiv+1;++i)
2012-10-12 00:45:21 +02:00
{
Matrix44x RotM; RotM.SetRotateRad(float(i%hRingDiv)*angleStepH,CoordType(0,0,1));
2012-10-15 14:49:17 +02:00
for(int j=0;j<vRingDiv+1;++j)
2012-10-12 00:45:21 +02:00
{
CoordType p;
2012-10-15 14:49:17 +02:00
p[0]= vRingRadius*cos(float(j%vRingDiv)*angleStepV) + hRingRadius;
p[1] = 0;
p[2]= vRingRadius*sin(float(j%vRingDiv)*angleStepV);
2012-10-12 00:45:21 +02:00
m.vert[i*(vRingDiv+1)+j].P() = RotM*p;
}
}
FaceGrid(m,vRingDiv+1,hRingDiv+1);
tri::Clean<MeshType>::RemoveDuplicateVertex(m);
tri::Allocator<MeshType>::CompactEveryVector(m);
2012-10-15 14:49:17 +02:00
2012-10-12 00:45:21 +02:00
}
2011-04-01 18:25:49 +02:00
/// Auxilary functions for superquadric surfaces
/// Used by SuperToroid and SuperEllipsoid
template <class ScalarType>
static ScalarType _SQfnC(ScalarType a, ScalarType b){
return math::Sgn(cos(a))*pow(fabs(cos(a)),b);
};
template <class ScalarType>
static ScalarType _SQfnS(ScalarType a, ScalarType b){
return math::Sgn(sin(a))*pow(fabs(sin(a)),b);
};
/**
* SuperToroid
*
* Generate a a supertoroid, e.g. a member of a family of doughnut-like surfaces
* (technically, a topological torus) whose shape is defined by mathematical formulas
* similar to those that define the superquadrics.
*/
template <class MeshType>
void SuperToroid(MeshType &m, float hRingRadius, float vRingRadius, float vSquareness, float hSquareness, int hRingDiv=24, int vRingDiv=12 )
{
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
m.Clear();
ScalarType angleStepV = (2.0f*M_PI)/vRingDiv;
ScalarType angleStepH = (2.0f*M_PI)/hRingDiv;
ScalarType u,v;
int count;
Allocator<MeshType>::AddVertices(m,(vRingDiv+1)*(hRingDiv+1));
for(int i=0;i<hRingDiv+1;++i)
{
u=float(i%hRingDiv)*angleStepH;
count=0;
for(int j=vRingDiv;j>=0;--j)
{
CoordType p;
v=float(j%vRingDiv)*angleStepV;
p[0]= (hRingRadius+vRingRadius*_SQfnC(u,vSquareness))*_SQfnC(v,hSquareness);;
p[1]= (hRingRadius+vRingRadius*_SQfnC(u,vSquareness))*_SQfnS(v,hSquareness);
p[2] = vRingRadius*_SQfnS(u,vSquareness);
m.vert[i*(vRingDiv+1)+count].P() = p;
count++;
}
}
FaceGrid(m,vRingDiv+1,hRingDiv+1);
tri::Clean<MeshType>::RemoveDuplicateVertex(m);
tri::Allocator<MeshType>::CompactEveryVector(m);
}
/**
* Generate a SuperEllipsoid eg a solid whose horizontal sections are super-ellipses (Lamé curves)
* with the same exponent r, and whose vertical sections through the center are super-ellipses with
* the same exponent t.
*/
template <class MeshType>
void SuperEllipsoid(MeshType &m, float rFeature, float sFeature, float tFeature, int hRingDiv=24, int vRingDiv=12 )
{
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
m.Clear();
ScalarType angleStepV = (2.0f*M_PI)/vRingDiv;
ScalarType angleStepH = (1.0f*M_PI)/hRingDiv;
float u;
float v;
Allocator<MeshType>::AddVertices(m,(vRingDiv+1)*(hRingDiv+1));
for(int i=0;i<hRingDiv+1;++i)
{
//u=ScalarType(i%hRingDiv)*angleStepH + angleStepH/2.0;
u=i*angleStepH;
for(int j=0;j<vRingDiv+1;++j)
{
CoordType p;
v=ScalarType(j%vRingDiv)*angleStepV;
p[0] = _SQfnC(v,2/rFeature)*_SQfnC(u,2/rFeature);
p[1] = _SQfnC(v,2/sFeature)*_SQfnS(u,2/sFeature);
p[2] = _SQfnS(v,2/tFeature);
m.vert[i*(vRingDiv+1)+j].P() = p;
}
}
FaceGrid(m,vRingDiv+1,hRingDiv+1);
tri::Clean<MeshType>::MergeCloseVertex(m,ScalarType(angleStepV*angleStepV*0.001));
tri::Allocator<MeshType>::CompactEveryVector(m);
bool oriented, orientable;
tri::UpdateTopology<MeshType>::FaceFace(m);
tri::Clean<MeshType>::OrientCoherentlyMesh(m,oriented,orientable);
tri::UpdateSelection<MeshType>::Clear(m);
}
/** This function build a mesh starting from a vector of generic coords (InCoordType) and indexes (InFaceIndexType)
* InCoordsType needs to have a [] access method for accessing the three coordinates
* and similarly the InFaceIndexType requires [] access method for accessing the three indexes
*/
template <class MeshType, class InCoordType, class InFaceIndexType >
void BuildMeshFromCoordVectorIndexVector(MeshType & in, const std::vector<InCoordType> & v, const std::vector<InFaceIndexType> & f)
2011-04-01 18:25:49 +02:00
{
typedef typename MeshType::CoordType CoordType;
2011-04-01 18:25:49 +02:00
in.Clear();
Allocator<MeshType>::AddVertices(in,v.size());
Allocator<MeshType>::AddFaces(in,f.size());
2011-04-01 18:25:49 +02:00
2013-06-24 11:36:46 +02:00
for(size_t i=0;i<v.size();++i)
{
const InCoordType &vv = v[i];
in.vert[i].P() = CoordType( vv[0],vv[1],vv[2]);
}
2013-06-24 11:36:46 +02:00
for(size_t i=0;i<f.size();++i)
{
const InFaceIndexType &ff= f[i];
assert( ff[0]>=0 && ff[0]<in.vn);
assert( ff[1]>=0 && ff[1]<in.vn);
assert( ff[2]>=0 && ff[2]<in.vn);
in.face[i].V(0) = &in.vert[ ff[0] ];
in.face[i].V(1) = &in.vert[ ff[1] ];
in.face[i].V(2) = &in.vert[ ff[2] ];
}
2011-04-01 18:25:49 +02:00
tri::UpdateBounding<MeshType>::Box(in);
}
template <class MeshType,class V>
void BuildMeshFromCoordVector( MeshType & in, const V & v)
{
std::vector<Point3i> dummyfaceVec;
BuildMeshFromCoordVectorIndexVector(in,v,dummyfaceVec);
2011-04-01 18:25:49 +02:00
}
template <class TriMeshType,class EdgeMeshType >
void BuildFromNonFaux(TriMeshType &in, EdgeMeshType &out)
{
tri::RequireCompactness(in);
std::vector<typename tri::UpdateTopology<TriMeshType>::PEdge> edgevec;
tri::UpdateTopology<TriMeshType>::FillUniqueEdgeVector(in, edgevec, false);
out.Clear();
for(size_t i=0;i<in.vert.size();++i)
tri::Allocator<EdgeMeshType>::AddVertex(out, in.vert[i].P());
tri::UpdateFlags<EdgeMeshType>::VertexClearV(out);
for(size_t i=0;i<edgevec.size();++i)
{
int i0 = tri::Index(in,edgevec[i].v[0]);
int i1 = tri::Index(in,edgevec[i].v[1]);
out.vert[i0].SetV();
out.vert[i1].SetV();
tri::Allocator<EdgeMeshType>::AddEdge(out,&out.vert[i0],&out.vert[i1]);
if(in.vert[i0].IsS()) out.vert[i0].SetS();
if(in.vert[i1].IsS()) out.vert[i1].SetS();
}
for(size_t i=0;i<out.vert.size();++i)
if(!out.vert[i].IsV()) tri::Allocator<EdgeMeshType>::DeleteVertex(out,out.vert[i]);
tri::Allocator<EdgeMeshType>::CompactEveryVector(out);
}
2011-04-01 18:25:49 +02:00
// Build a regular grid mesh as a typical height field mesh
// x y are the position on the grid scaled by wl and hl (at the end x is in the range 0..wl and y is in 0..hl)
// z is taken from the <data> array
2011-04-01 18:25:49 +02:00
// Once generated the vertex positions it uses the FaceGrid function to generate the faces;
template <class MeshType>
void Grid(MeshType & in, int w, int h, float wl, float hl, float *data=0)
2011-04-01 18:25:49 +02:00
{
typedef typename MeshType::CoordType CoordType;
2011-04-01 18:25:49 +02:00
in.Clear();
Allocator<MeshType>::AddVertices(in,w*h);
2011-04-01 18:25:49 +02:00
float wld=wl/float(w-1);
float hld=hl/float(h-1);
float zVal=0;
2011-04-01 18:25:49 +02:00
for(int i=0;i<h;++i)
for(int j=0;j<w;++j)
{
if(data) zVal=data[i*w+j];
in.vert[i*w+j].P()=CoordType ( j*wld, i*hld, zVal) ;
}
FaceGrid(in,w,h);
2011-04-01 18:25:49 +02:00
}
// Build a regular grid mesh of faces as a typical height field mesh
// Vertexes are assumed to be already be allocated.
template <class MeshType>
void FaceGrid(MeshType & in, int w, int h)
{
assert(in.vn == (int)in.vert.size()); // require a compact vertex vector
assert(in.vn >= w*h); // the number of vertices should match the number of expected grid vertices
Allocator<MeshType>::AddFaces(in,(w-1)*(h-1)*2);
2011-04-01 18:25:49 +02:00
// i+0,j+0 -- i+0,j+1
// | \ |
// | \ |
// | \ |
// | \ |
// i+1,j+0 -- i+1,j+1
//
for(int i=0;i<h-1;++i)
for(int j=0;j<w-1;++j)
{
in.face[2*(i*(w-1)+j)+0].V(0) = &(in.vert[(i+1)*w+j+1]);
in.face[2*(i*(w-1)+j)+0].V(1) = &(in.vert[(i+0)*w+j+1]);
in.face[2*(i*(w-1)+j)+0].V(2) = &(in.vert[(i+0)*w+j+0]);
2011-04-01 18:25:49 +02:00
in.face[2*(i*(w-1)+j)+1].V(0) = &(in.vert[(i+0)*w+j+0]);
in.face[2*(i*(w-1)+j)+1].V(1) = &(in.vert[(i+1)*w+j+0]);
in.face[2*(i*(w-1)+j)+1].V(2) = &(in.vert[(i+1)*w+j+1]);
}
if (HasPerFaceFlags(in)) {
2011-04-01 18:25:49 +02:00
for (int k=0; k<(h-1)*(w-1)*2; k++) {
in.face[k].SetF(2);
}
}
}
// Build a regular grid mesh of faces as the resulto of a sparsely regularly sampled height field.
// Vertexes are assumed to be already be allocated, but not all the grid vertexes are present.
// For this purpose vector with a grid of indexes is also passed.
// Negative indexes in this vector means that there is no vertex.
2011-04-01 18:25:49 +02:00
template <class MeshType>
void SparseFaceGrid(MeshType & in, const std::vector<int> &grid, int w, int h)
2011-04-01 18:25:49 +02:00
{
tri::RequireCompactness(in);
assert(in.vn <= w*h); // the number of vertices should match the number of expected grid vertices
2011-04-01 18:25:49 +02:00
// V0 V1
// i+0,j+0 -- i+0,j+1
// | \ |
// | \ |
// | \ |
// | \ |
// i+1,j+0 -- i+1,j+1
// V2 V3
for(int i=0;i<h-1;++i)
for(int j=0;j<w-1;++j)
{
int V0i= grid[(i+0)*w+j+0];
int V1i= grid[(i+0)*w+j+1];
int V2i= grid[(i+1)*w+j+0];
int V3i= grid[(i+1)*w+j+1];
int ndone=0;
bool quad = (V0i>=0 && V1i>=0 && V2i>=0 && V3i>=0 ) && tri::HasPerFaceFlags(in);
if(V0i>=0 && V2i>=0 && V3i>=0 )
{
typename MeshType::FaceIterator f= Allocator<MeshType>::AddFaces(in,1);
f->V(0)=&(in.vert[V3i]);
f->V(1)=&(in.vert[V2i]);
f->V(2)=&(in.vert[V0i]);
if (quad) f->SetF(2);
ndone++;
}
if(V0i>=0 && V1i>=0 && V3i>=0 )
{
typename MeshType::FaceIterator f= Allocator<MeshType>::AddFaces(in,1);
f->V(0)=&(in.vert[V0i]);
f->V(1)=&(in.vert[V1i]);
f->V(2)=&(in.vert[V3i]);
if (quad) f->SetF(2);
ndone++;
}
if (ndone==0) { // try diag the other way
if(V2i>=0 && V0i>=0 && V1i>=0 )
{
typename MeshType::FaceIterator f= Allocator<MeshType>::AddFaces(in,1);
f->V(0)=&(in.vert[V2i]);
f->V(1)=&(in.vert[V0i]);
f->V(2)=&(in.vert[V1i]);
ndone++;
}
if(V1i>=0 && V3i>=0 && V2i>=0 )
{
typename MeshType::FaceIterator f= Allocator<MeshType>::AddFaces(in,1);
f->V(0)=&(in.vert[V1i]);
f->V(1)=&(in.vert[V3i]);
f->V(2)=&(in.vert[V2i]);
ndone++;
}
2011-04-01 18:25:49 +02:00
}
}
}
template <class MeshType>
void Annulus(MeshType & m, float externalRadius, float internalRadius, int slices)
{
m.Clear();
typename MeshType::VertexIterator vi = vcg::tri::Allocator<MeshType>::AddVertices(m,slices*2);
for ( int j = 0; j < slices; ++j)
{
float x = cos( 2.0 * M_PI / slices * j);
float y = sin( 2.0 * M_PI / slices * j);
(*vi).P() = typename MeshType::CoordType(x,y,0)*internalRadius;
++vi;
(*vi).P() = typename MeshType::CoordType(x,y,0)*externalRadius;
++vi;
}
typename MeshType::FaceIterator fi ;
for ( int j = 0; j < slices; ++j)
{
fi = vcg::tri::Allocator<MeshType>::AddFaces(m,1);
(*fi).V(0) = &m.vert[ ((j+0)*2+0)%(slices*2) ];
(*fi).V(1) = &m.vert[ ((j+1)*2+1)%(slices*2) ];
(*fi).V(2) = &m.vert[ ((j+0)*2+1)%(slices*2) ];
fi = vcg::tri::Allocator<MeshType>::AddFaces(m,1);
(*fi).V(0) = &m.vert[ ((j+1)*2+0)%(slices*2) ];
(*fi).V(1) = &m.vert[ ((j+1)*2+1)%(slices*2) ];
(*fi).V(2) = &m.vert[ ((j+0)*2+0)%(slices*2) ];
}
}
template <class MeshType>
void OrientedAnnulus(MeshType & m, Point3f center, Point3f norm, float externalRadius, float internalRadius, int slices)
{
Annulus(m,externalRadius,internalRadius, slices);
float angleRad = Angle(Point3f(0,0,1),norm);
Point3f axis = Point3f(0,0,1)^norm;
Matrix44f rotM;
rotM.SetRotateRad(angleRad,axis);
tri::UpdatePosition<MeshType>::Matrix(m,rotM);
tri::UpdatePosition<MeshType>::Translate(m,center);
}
template <class MeshType>
void Disk(MeshType & m, int slices)
{
m.Clear();
typename MeshType::VertexIterator vi = vcg::tri::Allocator<MeshType>::AddVertices(m,slices+1);
(*vi).P() = typename MeshType::CoordType(0,0,0);
++vi;
for ( int j = 0; j < slices; ++j)
{
float x = cos( 2.0 * M_PI / slices * j);
float y = sin( 2.0 * M_PI / slices * j);
(*vi).P() = typename MeshType::CoordType(x,y,0);
++vi;
}
typename MeshType::FaceIterator fi ;
for ( int j = 0; j < slices; ++j)
{
int a = 1+(j+0)%slices;
int b = 1+(j+1)%slices;
fi = vcg::tri::Allocator<MeshType>::AddFaces(m,1);
(*fi).V(0) = &m.vert[ 0 ];
(*fi).V(1) = &m.vert[ a ];
(*fi).V(2) = &m.vert[ b ];
}
}
template <class MeshType>
void OrientedDisk(MeshType &m, int slices, typename MeshType::CoordType center, typename MeshType::CoordType norm, float radius)
{
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
Disk(m,slices);
tri::UpdatePosition<MeshType>::Scale(m,radius);
ScalarType angleRad = Angle(CoordType(0,0,1),norm);
CoordType axis = CoordType(0,0,1)^norm;
Matrix44<ScalarType> rotM;
rotM.SetRotateRad(angleRad,axis);
tri::UpdatePosition<MeshType>::Matrix(m,rotM);
tri::UpdatePosition<MeshType>::Translate(m,center);
}
2011-04-01 18:25:49 +02:00
template <class MeshType>
void OrientedEllipticPrism(MeshType & m, const typename MeshType::CoordType origin, const typename MeshType::CoordType end, float radius, float xScale, float yScale,bool capped, int slices=32, int stacks=4 )
{
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef Matrix44<typename MeshType::ScalarType> Matrix44x;
Cylinder(slices,stacks,m,capped);
tri::UpdatePosition<MeshType>::Translate(m,CoordType(0,1,0));
tri::UpdatePosition<MeshType>::Scale(m,CoordType(1,0.5f,1));
tri::UpdatePosition<MeshType>::Scale(m,CoordType(xScale,1.0f,yScale));
float height = Distance(origin,end);
tri::UpdatePosition<MeshType>::Scale(m,CoordType(radius,height,radius));
CoordType norm = end-origin;
ScalarType angleRad = Angle(CoordType(0,1,0),norm);
const ScalarType Delta= 0.000000001;
Matrix44x rotM;
if (fabs(angleRad)<Delta)
rotM.SetIdentity();
else
if (fabs(angleRad-M_PI)<Delta)
{
CoordType axis = CoordType(0,0,1)^norm;
rotM.SetRotateRad(angleRad,axis);
}
else
{
CoordType axis = CoordType(0,1,0)^norm;
rotM.SetRotateRad(angleRad,axis);
}
tri::UpdatePosition<MeshType>::Matrix(m,rotM);
tri::UpdatePosition<MeshType>::Translate(m,origin);
}
2011-04-01 18:25:49 +02:00
template <class MeshType>
void OrientedCylinder(MeshType & m, const typename MeshType::CoordType origin, const typename MeshType::CoordType end, float radius, bool capped, int slices=32, int stacks=4 )
{
OrientedEllipticPrism(m,origin,end,radius,1.0f,1.0f,capped,slices,stacks);
}
template <class MeshType>
void Cylinder(int slices, int stacks, MeshType & m, bool capped=false)
{
m.Clear();
typename MeshType::VertexIterator vi = vcg::tri::Allocator<MeshType>::AddVertices(m,slices*(stacks+1));
for ( int i = 0; i < stacks+1; ++i)
for ( int j = 0; j < slices; ++j)
{
float x,y,h;
x = cos( 2.0 * M_PI / slices * j);
y = sin( 2.0 * M_PI / slices * j);
h = 2 * i / (float)(stacks) - 1;
(*vi).P() = typename MeshType::CoordType(x,h,y);
++vi;
}
for ( int j = 0; j < stacks; ++j)
for ( int i = 0; i < slices; ++i)
{
int a,b,c,d;
a = (j+0)*slices + i;
b = (j+1)*slices + i;
c = (j+1)*slices + (i+1)%slices;
d = (j+0)*slices + (i+1)%slices;
if(((i+j)%2) == 0){
vcg::tri::Allocator<MeshType>::AddFace(m, &m.vert[ a ], &m.vert[ b ], &m.vert[ c ]);
vcg::tri::Allocator<MeshType>::AddFace(m, &m.vert[ c ], &m.vert[ d ], &m.vert[ a ]);
}
else{
vcg::tri::Allocator<MeshType>::AddFace(m, &m.vert[ b ], &m.vert[ c ], &m.vert[ d ]);
vcg::tri::Allocator<MeshType>::AddFace(m, &m.vert[ d ], &m.vert[ a ], &m.vert[ b ]);
}
2011-04-01 18:25:49 +02:00
}
if(capped)
{
tri::Allocator<MeshType>::AddVertex(m,typename MeshType::CoordType(0,-1,0));
tri::Allocator<MeshType>::AddVertex(m,typename MeshType::CoordType(0, 1,0));
int base = 0;
for ( int i = 0; i < slices; ++i)
vcg::tri::Allocator<MeshType>::AddFace(m, &m.vert[ m.vn-2 ], &m.vert[ base+i ], &m.vert[ base+(i+1)%slices ]);
base = (stacks)*slices;
for ( int i = 0; i < slices; ++i)
vcg::tri::Allocator<MeshType>::AddFace(m, &m.vert[ m.vn-1 ], &m.vert[ base+(i+1)%slices ], &m.vert[ base+i ]);
}
if (HasPerFaceFlags(m)) {
for (typename MeshType::FaceIterator fi=m.face.begin(); fi!=m.face.end(); fi++) {
(*fi).SetF(2);
}
}
2011-04-01 18:25:49 +02:00
}
class _SphFace;
class _SphVertex;
struct _SphUsedTypes : public UsedTypes< Use<_SphVertex> ::AsVertexType,
Use<_SphFace> ::AsFaceType>{};
class _SphVertex : public Vertex<_SphUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::BitFlags >{};
class _SphFace : public Face< _SphUsedTypes, face::VertexRef, face::Normal3f, face::BitFlags, face::FFAdj > {};
class _SphMesh : public tri::TriMesh< vector<_SphVertex>, vector<_SphFace> > {};
template <class MeshType>
void BuildPrismFaceShell(MeshType &mIn, MeshType &mOut, float height=0, float inset=0, bool smoothFlag=false )
{
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::CoordType CoordType;
if(height==0) height = mIn.bbox.Diag()/100.0f;
if(inset==0) inset = mIn.bbox.Diag()/200.0f;
tri::UpdateTopology<MeshType>::FaceFace(mIn);
tri::UpdateFlags<MeshType>::FaceClearV(mIn);
tri::UpdateNormal<MeshType>::PerVertexNormalizedPerFace(mIn);
for(size_t i=0;i<mIn.face.size();++i) if(!mIn.face[i].IsV())
{
MeshType faceM;
std::vector<VertexPointer> vertVec;
std::vector<FacePointer> faceVec;
tri::PolygonSupport<MeshType,MeshType>::ExtractPolygon(&(mIn.face[i]),vertVec,faceVec);
size_t vn = vertVec.size();
CoordType nf(0,0,0);
for(size_t j=0;j<faceVec.size();++j)
nf+=vcg::NormalizedTriangleNormal(*faceVec[j]) * DoubleArea(*faceVec[j]);
nf.Normalize();
nf = nf*height/2.0f;
CoordType bary(0,0,0);
for(size_t j=0;j<faceVec.size();++j)
bary+= Barycenter(*faceVec[j]);
bary/=float(faceVec.size());
// Add vertices (alternated top and bottom)
tri::Allocator<MeshType>::AddVertex(faceM, bary+nf);
tri::Allocator<MeshType>::AddVertex(faceM, bary-nf);
for(size_t j=0;j<vn;++j){
CoordType delta = (vertVec[j]->P() - bary);
delta.Normalize();
delta = delta*inset;
tri::Allocator<MeshType>::AddVertex(faceM, vertVec[j]->P()-delta+nf);
tri::Allocator<MeshType>::AddVertex(faceM, vertVec[j]->P()-delta-nf);
}
// Build top and bottom faces
for(size_t j=0;j<vn;++j)
tri::Allocator<MeshType>::AddFace(faceM, 0, 2+(j+0)*2, 2+((j+1)%vn)*2 );
for(size_t j=0;j<vn;++j)
tri::Allocator<MeshType>::AddFace(faceM, 1, 3+((j+1)%vn)*2, 3+(j+0)*2 );
// Build side strip
for(size_t j=0;j<vn;++j){
size_t j0=j;
size_t j1=(j+1)%vn;
tri::Allocator<MeshType>::AddFace(faceM, 2+ j0*2 + 0 , 2+ j0*2+1, 2+j1*2+0);
tri::Allocator<MeshType>::AddFace(faceM, 2+ j0*2 + 1 , 2+ j1*2+1, 2+j1*2+0);
}
for(size_t j=0;j<2*vn;++j)
faceM.face[j].SetS();
if(smoothFlag)
{
tri::UpdateTopology<MeshType>::FaceFace(faceM);
tri::UpdateFlags<MeshType>::FaceBorderFromFF(faceM);
tri::Refine(faceM, MidPoint<MeshType>(&faceM),0,true);
tri::Refine(faceM, MidPoint<MeshType>(&faceM),0,true);
tri::UpdateSelection<MeshType>::VertexFromFaceStrict(faceM);
tri::Smooth<MeshType>::VertexCoordLaplacian(faceM,2,true,true);
}
tri::Append<MeshType,MeshType>::Mesh(mOut,faceM);
} // end main loop for each face;
}
template <class MeshType>
void BuildCylinderEdgeShell(MeshType &mIn, MeshType &mOut, float radius=0, int slices=16, int stacks=1 )
{
if(radius==0) radius = mIn.bbox.Diag()/100.0f;
typedef typename tri::UpdateTopology<MeshType>::PEdge PEdge;
std::vector<PEdge> edgeVec;
tri::UpdateTopology<MeshType>::FillUniqueEdgeVector(mIn,edgeVec,false);
for(size_t i=0;i<edgeVec.size();++i)
{
MeshType mCyl;
tri::OrientedCylinder(mCyl,edgeVec[i].v[0]->P(),edgeVec[i].v[1]->P(),radius,true,slices,stacks);
tri::Append<MeshType,MeshType>::Mesh(mOut,mCyl);
}
}
template <class MeshType>
void BuildSphereVertexShell(MeshType &mIn, MeshType &mOut, float radius=0, int recDiv=2 )
{
if(radius==0) radius = mIn.bbox.Diag()/100.0f;
for(size_t i=0;i<mIn.vert.size();++i)
{
MeshType mSph;
tri::Sphere(mSph,recDiv);
tri::UpdatePosition<MeshType>::Scale(mSph,radius);
tri::UpdatePosition<MeshType>::Translate(mSph,mIn.vert[i].P());
tri::Append<MeshType,MeshType>::Mesh(mOut,mSph);
}
}
template <class MeshType>
void BuildCylinderVertexShell(MeshType &mIn, MeshType &mOut, float radius=0, float height=0, int slices=16, int stacks=1 )
{
typedef typename MeshType::CoordType CoordType;
if(radius==0) radius = mIn.bbox.Diag()/100.0f;
if(height==0) height = mIn.bbox.Diag()/200.0f;
for(size_t i=0;i<mIn.vert.size();++i)
{
CoordType p = mIn.vert[i].P();
CoordType n = mIn.vert[i].N().Normalize();
MeshType mCyl;
tri::OrientedCylinder(mCyl,p-n*height,p+n*height,radius,true,slices,stacks);
tri::Append<MeshType,MeshType>::Mesh(mOut,mCyl);
}
}
2011-04-01 18:25:49 +02:00
template <class MeshType>
void GenerateCameraMesh(MeshType &in){
typedef typename MeshType::CoordType MV;
MV vv[52]={
MV(-0.000122145 , -0.2 ,0.35),
MV(0.000122145 , -0.2 ,-0.35),MV(-0.000122145 , 0.2 ,0.35),MV(0.000122145 , 0.2 ,-0.35),MV(0.999878 , -0.2 ,0.350349),MV(1.00012 , -0.2 ,-0.349651),MV(0.999878 , 0.2 ,0.350349),MV(1.00012 , 0.2 ,-0.349651),MV(1.28255 , 0.1 ,0.754205),MV(1.16539 , 0.1 ,1.03705),MV(0.88255 , 0.1 ,1.15421),
MV(0.599707 , 0.1 ,1.03705),MV(0.48255 , 0.1 ,0.754205),MV(0.599707 , 0.1 ,0.471362),MV(0.88255 , 0.1 ,0.354205),MV(1.16539 , 0.1 ,0.471362),MV(1.28255 , -0.1 ,0.754205),MV(1.16539 , -0.1 ,1.03705),MV(0.88255 , -0.1 ,1.15421),MV(0.599707 , -0.1 ,1.03705),MV(0.48255 , -0.1 ,0.754205),
MV(0.599707 , -0.1 ,0.471362),MV(1.16539 , -0.1 ,0.471362),MV(0.88255 , -0.1 ,0.354205),MV(3.49164e-005 , 0 ,-0.1),MV(1.74582e-005 , -0.0866025 ,-0.05),MV(-1.74582e-005 , -0.0866025 ,0.05),MV(-3.49164e-005 , 8.74228e-009 ,0.1),MV(-1.74582e-005 , 0.0866025 ,0.05),MV(1.74582e-005 , 0.0866025 ,-0.05),MV(-0.399913 , 1.99408e-022 ,-0.25014),
MV(-0.399956 , -0.216506 ,-0.12514),MV(-0.400044 , -0.216506 ,0.12486),MV(-0.400087 , 2.18557e-008 ,0.24986),MV(-0.400044 , 0.216506 ,0.12486),MV(-0.399956 , 0.216506 ,-0.12514),MV(0.479764 , 0.1 ,0.754205),MV(0.362606 , 0.1 ,1.03705),MV(0.0797637 , 0.1 ,1.15421),MV(-0.203079 , 0.1 ,1.03705),MV(-0.320236 , 0.1 ,0.754205),
MV(-0.203079 , 0.1 ,0.471362),MV(0.0797637 , 0.1 ,0.354205),MV(0.362606 , 0.1 ,0.471362),MV(0.479764 , -0.1 ,0.754205),MV(0.362606 , -0.1 ,1.03705),MV(0.0797637 , -0.1 ,1.15421),MV(-0.203079 , -0.1 ,1.03705),MV(-0.320236 , -0.1 ,0.754205),MV(0.0797637 , -0.1 ,0.354205),MV(0.362606 , -0.1 ,0.471362),
MV(-0.203079 , -0.1 ,0.471362), };
int ff[88][3]={
{0,2,3},
{3,1,0},{4,5,7},{7,6,4},{0,1,5},{5,4,0},{1,3,7},{7,5,1},{3,2,6},{6,7,3},{2,0,4},
{4,6,2},{10,9,8},{10,12,11},{10,13,12},{10,14,13},{10,15,14},{10,8,15},{8,17,16},{8,9,17},{9,18,17},
{9,10,18},{10,19,18},{10,11,19},{11,20,19},{11,12,20},{12,21,20},{12,13,21},{13,23,21},{13,14,23},{14,22,23},
{14,15,22},{15,16,22},{15,8,16},{23,16,17},{23,17,18},{23,18,19},{23,19,20},{23,20,21},{23,22,16},{25,27,26},
{25,28,27},{25,29,28},{25,24,29},{24,31,30},{24,25,31},{25,32,31},{25,26,32},{26,33,32},{26,27,33},{27,34,33},
{27,28,34},{28,35,34},{28,29,35},{29,30,35},{29,24,30},{35,30,31},{35,31,32},{35,32,33},{35,33,34},{42,37,36},
{42,38,37},{42,39,38},{42,40,39},{42,41,40},{42,36,43},{36,45,44},{36,37,45},{37,46,45},{37,38,46},{38,47,46},
{38,39,47},{39,48,47},{39,40,48},{40,51,48},{40,41,51},{41,49,51},{41,42,49},{42,50,49},{42,43,50},{43,44,50},
{43,36,44},{51,44,45},{51,45,46},{51,46,47},{51,47,48},{51,49,50},{51,50,44},
};
in.Clear();
Allocator<MeshType>::AddVertices(in,52);
Allocator<MeshType>::AddFaces(in,88);
in.vn=52;in.fn=88;
int i,j;
for(i=0;i<in.vn;i++)
in.vert[i].P()=vv[i];;
std::vector<typename MeshType::VertexPointer> index(in.vn);
typename MeshType::VertexIterator vi;
for(j=0,vi=in.vert.begin();j<in.vn;++j,++vi) index[j] = &*vi;
for(j=0;j<in.fn;++j)
{
in.face[j].V(0)=index[ff[j][0]];
in.face[j].V(1)=index[ff[j][1]];
in.face[j].V(2)=index[ff[j][2]];
}
2011-04-01 18:25:49 +02:00
}
template <class MeshType>
void OrientedRect(MeshType &square, float width, float height, Point3f c, Point3f dir=Point3f(0,0,0), float angleDeg=0,Point3f preRotTra = Point3f(0,0,0))
{
float zeros[4]={0,0,0,0};
square.Clear();
Matrix44f rotM;
tri::Grid(square,2,2,width,height,zeros);
tri::UpdatePosition<MeshType>::Translate(square,Point3f(-width/2.0f,-height/2.0f,0.0f));
if(angleDeg!=0){
tri::UpdatePosition<MeshType>::Translate(square,preRotTra);
rotM.SetRotateDeg(angleDeg,dir);
tri::UpdatePosition<MeshType>::Matrix(square,rotM);
}
tri::UpdatePosition<MeshType>::Translate(square,c);
tri::UpdateBounding<MeshType>::Box(square);
}
template <class MeshType>
void OrientedSquare(MeshType &square, float width, Point3f c, Point3f dir=Point3f(0,0,0), float angleDeg=0,Point3f preRotTra = Point3f(0,0,0))
{
OrientedRect(square,width,width,c,dir,angleDeg,preRotTra);
}
2011-04-01 18:25:49 +02:00
//@}
} // End Namespace TriMesh
} // End Namespace vcg
#endif