vcglib/vcg/complex/trimesh/point_sampling.h

1308 lines
47 KiB
C
Raw Normal View History

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
The sampling Class has a set of static functions, that you can call to sample the surface of a mesh.
Each function is templated on the mesh and on a Sampler object s.
Each function calls many time the sample object with the sampling point as parameter.
2009-01-12 17:11:37 +01:00
Sampler Classes and Sampling algorithms are independent.
Sampler classes exploits the sample that are generated with various algorithms.
2009-01-12 17:11:37 +01:00
For example, you can compute Hausdorff distance (that is a sampler) using various
sampling strategies (montecarlo, stratified etc).
****************************************************************************/
#ifndef __VCGLIB_POINT_SAMPLING
#define __VCGLIB_POINT_SAMPLING
#include <vcg/math/random_generator.h>
2009-01-09 18:05:10 +01:00
#include <vcg/complex/trimesh/closest.h>
#include <vcg/space/index/spatial_hashing.h>
#include <vcg/complex/trimesh/stat.h>
2008-07-20 16:34:26 +02:00
#include <vcg/complex/trimesh/update/topology.h>
2009-12-07 09:15:59 +01:00
#include <vcg/complex/trimesh/update/normal.h>
#include <vcg/complex/trimesh/update/flag.h>
2008-07-20 16:34:26 +02:00
#include <vcg/space/box2.h>
#include <vcg/space/segment2.h>
namespace vcg
{
namespace tri
{
/// Trivial Sampler, an example sampler object that show the required interface used by the sampling class.
/// Most of the sampling classes call the AddFace method with the face containing the sample and its barycentric coord.
/// Beside being an example of how to write a sampler it provides a simple way to use the various sampling classes.
// For example if you just want to get a vector with positions over the surface You have just to write
//
// vector<Point3f> myVec;
// TrivialSampler<MyMesh> ts(myVec)
// SurfaceSampling<MyMesh, TrivialSampler<MyMesh> >::Montecarlo(M, ts, SampleNum);
//
//
template <class MeshType>
class TrivialSampler
{
public:
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::FaceType FaceType;
TrivialSampler()
{
sampleVec = new std::vector<CoordType>();
vectorOwner=true;
};
TrivialSampler(std::vector<CoordType> &Vec)
{
sampleVec = &Vec;
sampleVec->clear();
vectorOwner=false;
};
~TrivialSampler()
{
if(vectorOwner) delete sampleVec;
}
private:
std::vector<CoordType> *sampleVec;
bool vectorOwner;
public:
void AddVert(const VertexType &p)
{
sampleVec->push_back(p.cP());
}
void AddFace(const FaceType &f, const CoordType &p)
{
sampleVec->push_back(f.P(0)*p[0] + f.P(1)*p[1] +f.P(2)*p[2] );
}
void AddTextureSample(const FaceType &, const CoordType &, const Point2i &, float )
{
// Retrieve the color of the sample from the face f using the barycentric coord p
// and write that color in a texture image at position <tp[0], texHeight-tp[1]>
// if edgeDist is > 0 then the corrisponding point is affecting face color even if outside the face area (in texture space)
}
}; // end class TrivialSampler
template <class MetroMesh, class VertexSampler>
class SurfaceSampling
{
typedef typename MetroMesh::CoordType CoordType;
typedef typename MetroMesh::ScalarType ScalarType;
typedef typename MetroMesh::VertexType VertexType;
typedef typename MetroMesh::VertexPointer VertexPointer;
typedef typename MetroMesh::VertexIterator VertexIterator;
typedef typename MetroMesh::FacePointer FacePointer;
typedef typename MetroMesh::FaceIterator FaceIterator;
typedef typename MetroMesh::FaceType FaceType;
typedef typename MetroMesh::FaceContainer FaceContainer;
typedef typename vcg::SpatialHashTable<FaceType, ScalarType> MeshSHT;
typedef typename vcg::SpatialHashTable<FaceType, ScalarType>::CellIterator MeshSHTIterator;
typedef typename vcg::SpatialHashTable<VertexType, ScalarType> MontecarloSHT;
typedef typename vcg::SpatialHashTable<VertexType, ScalarType>::CellIterator MontecarloSHTIterator;
typedef typename vcg::SpatialHashTable<VertexType, ScalarType> SampleSHT;
typedef typename vcg::SpatialHashTable<VertexType, ScalarType>::CellIterator SampleSHTIterator;
public:
static math::MarsenneTwisterRNG &SamplingRandomGenerator()
{
2009-01-18 20:33:50 +01:00
static math::MarsenneTwisterRNG rnd;
return rnd;
}
// Returns an integer random number in the [0,i-1] interval using the improve Marsenne-Twister method.
static unsigned int RandomInt(unsigned int i)
{
return (SamplingRandomGenerator().generate(0) % i);
}
// Returns a random number in the [0,1) real interval using the improved Marsenne-Twister method.
static double RandomDouble01()
{
return SamplingRandomGenerator().generate01();
}
// Returns a random number in the [0,1] real interval using the improved Marsenne-Twister.
static double RandomDouble01closed()
{
return SamplingRandomGenerator().generate01closed();
}
static void AllVertex(MetroMesh & m, VertexSampler &ps)
{
VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
{
if(!(*vi).IsD())
{
ps.AddVert(*vi);
}
}
}
2008-06-04 15:29:04 +02:00
/// Sample the vertices in a weighted way. Each vertex has a probability of being chosen
2008-06-04 15:29:04 +02:00
/// that is proportional to its quality.
/// It assumes that you are asking a number of vertices smaller than nv;
/// Algorithm:
/// 1) normalize quality so that sum q == 1;
/// 2) shuffle vertices.
/// 3) for each vertices choose it if rand > thr;
static void VertexWeighted(MetroMesh & m, VertexSampler &ps, int sampleNum)
{
2008-06-04 15:29:04 +02:00
ScalarType qSum = 0;
VertexIterator vi;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if(!(*vi).IsD())
qSum += (*vi).Q();
ScalarType samplePerUnit = sampleNum/qSum;
ScalarType floatSampleNum =0;
std::vector<VertexPointer> vertVec;
FillAndShuffleVertexPointerVector(m,vertVec);
2008-06-04 15:29:04 +02:00
std::vector<bool> vertUsed(m.vn,false);
int i=0; int cnt=0;
while(cnt < sampleNum)
{
if(vertUsed[i])
{
floatSampleNum += vertVec[i]->Q() * samplePerUnit;
int vertSampleNum = (int) floatSampleNum;
floatSampleNum -= (float) vertSampleNum;
// for every sample p_i in T...
if(vertSampleNum > 1)
{
ps.AddVert(*vertVec[i]);
cnt++;
vertUsed[i]=true;
}
}
i = (i+1)%m.vn;
}
}
2008-11-20 18:00:30 +01:00
/// Sample the vertices in a uniform way. Each vertex has a probability of being chosen
2008-06-04 15:29:04 +02:00
/// that is proportional to the area it represent.
static void VertexAreaUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
{
VertexIterator vi;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if(!(*vi).IsD())
(*vi).Q() = 0;
FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{
ScalarType areaThird = DoubleArea(*fi)/6.0;
(*fi).V(0).Q()+=areaThird;
(*fi).V(1).Q()+=areaThird;
(*fi).V(2).Q()+=areaThird;
}
2008-06-04 15:29:04 +02:00
VertexWeighted(m,ps,sampleNum);
}
static void FillAndShuffleFacePointerVector(MetroMesh & m, std::vector<FacePointer> &faceVec)
{
FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD()) faceVec.push_back(&*fi);
assert((int)faceVec.size()==m.fn);
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
std::random_shuffle(faceVec.begin(),faceVec.end(), p_myrandom);
}
static void FillAndShuffleVertexPointerVector(MetroMesh & m, std::vector<VertexPointer> &vertVec)
2008-06-04 15:29:04 +02:00
{
VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD()) vertVec.push_back(&*vi);
2008-07-01 11:34:43 +02:00
assert((int)vertVec.size()==m.vn);
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
std::random_shuffle(vertVec.begin(),vertVec.end(), p_myrandom);
2008-06-04 15:29:04 +02:00
}
2008-06-04 15:29:04 +02:00
/// Sample the vertices in a uniform way. Each vertex has the same probabiltiy of being chosen.
static void VertexUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
{
if(sampleNum>=m.vn) {
2008-06-04 15:29:04 +02:00
AllVertex(m,ps);
return;
}
std::vector<VertexPointer> vertVec;
FillAndShuffleVertexPointerVector(m,vertVec);
for(int i =0; i< sampleNum; ++i)
ps.AddVert(*vertVec[i]);
}
static void FaceUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
{
if(sampleNum>=m.fn) {
AllFace(m,ps);
return;
}
std::vector<FacePointer> faceVec;
FillAndShuffleFacePointerVector(m,faceVec);
for(int i =0; i< sampleNum; ++i)
ps.AddFace(*faceVec[i],Barycenter(*faceVec[i]));
}
static void AllFace(MetroMesh & m, VertexSampler &ps)
{
FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
ps.AddFace(*fi,Barycenter(*fi));
}
}
static void AllEdge(MetroMesh & m, VertexSampler &ps)
{
// Edge sampling.
typedef typename UpdateTopology<MetroMesh>::PEdge SimpleEdge;
std::vector< SimpleEdge > Edges;
typename std::vector< SimpleEdge >::iterator ei;
UpdateTopology<MetroMesh>::FillUniqueEdgeVector(m,Edges);
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
{
Point3f interp(0,0,0);
interp[ (*ei).z ]=.5;
interp[((*ei).z+1)%3]=.5;
ps.AddFace(*(*ei).f,interp);
}
}
// Regular Uniform Edge sampling
// Each edge is subdivided in a number of pieces proprtional to its lenght
// Sample are choosen without touching the vertices.
2009-10-02 16:11:34 +02:00
static void EdgeUniform(MetroMesh & m, VertexSampler &ps,int sampleNum, bool sampleFauxEdge=true)
{
typedef typename UpdateTopology<MetroMesh>::PEdge SimpleEdge;
std::vector< SimpleEdge > Edges;
2009-10-02 16:11:34 +02:00
UpdateTopology<MetroMesh>::FillUniqueEdgeVector(m,Edges,sampleFauxEdge);
// First loop compute total edge lenght;
float edgeSum=0;
typename std::vector< SimpleEdge >::iterator ei;
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
edgeSum+=Distance((*ei).v[0]->P(),(*ei).v[1]->P());
2009-01-20 00:18:10 +01:00
//qDebug("Edges %i edge sum %f",Edges.size(),edgeSum);
float sampleLen = edgeSum/sampleNum;
2009-01-20 00:18:10 +01:00
//qDebug("EdgesSamples %i Sampling Len %f",sampleNum,sampleLen);
float rest=0;
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
{
float len = Distance((*ei).v[0]->P(),(*ei).v[1]->P());
float samplePerEdge = floor((len+rest)/sampleLen);
rest = (len+rest) - samplePerEdge * sampleLen;
float step = 1.0/(samplePerEdge+1);
for(int i=0;i<samplePerEdge;++i)
{
Point3f interp(0,0,0);
interp[ (*ei).z ]=step*(i+1);
interp[((*ei).z+1)%3]=1.0-step*(i+1);
ps.AddFace(*(*ei).f,interp);
}
}
}
// Generate the barycentric coords of a random point over a single face,
// with a uniform distribution over the triangle.
// It uses the parallelogram folding trick.
static CoordType RandomBaricentric()
{
CoordType interp;
interp[1] = RandomDouble01();
interp[2] = RandomDouble01();
if(interp[1] + interp[2] > 1.0)
{
interp[1] = 1.0 - interp[1];
interp[2] = 1.0 - interp[2];
}
assert(interp[1] + interp[2] <= 1.0);
interp[0]=1.0-(interp[1] + interp[2]);
return interp;
}
static void StratifiedMontecarlo(MetroMesh & m, VertexSampler &ps,int sampleNum)
{
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
ScalarType samplePerAreaUnit = sampleNum/area;
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
// Montecarlo sampling.
double floatSampleNum = 0.0;
FaceIterator fi;
for(fi=m.face.begin(); fi != m.face.end(); fi++)
if(!(*fi).IsD())
{
// compute # samples in the current face (taking into account of the remainders)
floatSampleNum += 0.5*DoubleArea(*fi) * samplePerAreaUnit;
int faceSampleNum = (int) floatSampleNum;
// for every sample p_i in T...
for(int i=0; i < faceSampleNum; i++)
ps.AddFace(*fi,RandomBaricentric());
floatSampleNum -= (double) faceSampleNum;
}
}
2009-01-09 18:05:10 +01:00
static void Montecarlo(MetroMesh & m, VertexSampler &ps,int sampleNum)
{
typedef std::pair<ScalarType, FacePointer> IntervalType;
std::vector< IntervalType > intervals (m.fn+1);
FaceIterator fi;
int i=0;
intervals[i]=std::make_pair(0,FacePointer(0));
// First loop: build a sequence of consecutive segments proportional to the triangle areas.
for(fi=m.face.begin(); fi != m.face.end(); fi++)
if(!(*fi).IsD())
{
intervals[i+1]=std::make_pair(intervals[i].first+0.5*DoubleArea(*fi), &*fi);
++i;
}
ScalarType meshArea = intervals.back().first;
for(i=0;i<sampleNum;++i)
{
ScalarType val = meshArea * RandomDouble01();
// lower_bound returns the furthermost iterator i in [first, last) such that, for every iterator j in [first, i), *j < value.
// E.g. An iterator pointing to the first element "not less than" val, or end() if every element is less than val.
typename std::vector<IntervalType>::iterator it = lower_bound(intervals.begin(),intervals.end(),std::make_pair(val,FacePointer(0)) );
assert(it != intervals.end());
assert(it != intervals.begin());
assert( (*(it-1)).first <val );
assert( (*(it)).first >= val);
ps.AddFace( *(*it).second, RandomBaricentric() );
}
}
2008-05-29 08:17:09 +02:00
static ScalarType WeightedArea(FaceType f)
{
ScalarType averageQ = ( f.V(0)->Q() + f.V(1)->Q() + f.V(2)->Q() ) /3.0;
return DoubleArea(f)*averageQ/2.0;
}
/// Compute a sampling of the surface that is weighted by the quality
/// the area of each face is multiplied by the average of the quality of the vertices.
/// So the a face with a zero quality on all its vertices is never sampled and a face with average quality 2 get twice the samples of a face with the same area but with an average quality of 1;
static void WeightedMontecarlo(MetroMesh & m, VertexSampler &ps, int sampleNum)
{
assert(tri::HasPerVertexQuality(m));
ScalarType weightedArea = 0;
FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
weightedArea += WeightedArea(*fi);
ScalarType samplePerAreaUnit = sampleNum/weightedArea;
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
2008-05-29 08:17:09 +02:00
// Montecarlo sampling.
double floatSampleNum = 0.0;
for(fi=m.face.begin(); fi != m.face.end(); fi++)
if(!(*fi).IsD())
{
// compute # samples in the current face (taking into account of the remainders)
floatSampleNum += WeightedArea(*fi) * samplePerAreaUnit;
int faceSampleNum = (int) floatSampleNum;
// for every sample p_i in T...
for(int i=0; i < faceSampleNum; i++)
ps.AddFace(*fi,RandomBaricentric());
floatSampleNum -= (double) faceSampleNum;
}
}
// Subdivision sampling of a single face.
// return number of added samples
static int SingleFaceSubdivision(int sampleNum, const CoordType & v0, const CoordType & v1, const CoordType & v2, VertexSampler &ps, FacePointer fp, bool randSample)
{
// recursive face subdivision.
if(sampleNum == 1)
{
// ground case.
CoordType SamplePoint;
if(randSample)
{
CoordType rb=RandomBaricentric();
SamplePoint=v0*rb[0]+v1*rb[1]+v2*rb[2];
}
else SamplePoint=((v0+v1+v2)*(1.0f/3.0f));
ps.AddFace(*fp,SamplePoint);
return 1;
}
int s0 = sampleNum /2;
int s1 = sampleNum-s0;
assert(s0>0);
assert(s1>0);
ScalarType w0 = ScalarType(s1)/ScalarType(sampleNum);
ScalarType w1 = 1.0-w0;
// compute the longest edge.
ScalarType maxd01 = SquaredDistance(v0,v1);
ScalarType maxd12 = SquaredDistance(v1,v2);
ScalarType maxd20 = SquaredDistance(v2,v0);
int res;
if(maxd01 > maxd12)
if(maxd01 > maxd20) res = 0;
else res = 2;
else
if(maxd12 > maxd20) res = 1;
else res = 2;
int faceSampleNum=0;
// break the input triangle along the midpoint of the longest edge.
CoordType pp;
switch(res)
{
case 0 : pp = v0*w0 + v1*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,pp,v2,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample);
break;
case 1 : pp = v1*w0 + v2*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,v0,pp,v2,ps,fp,randSample);
break;
case 2 : pp = v0*w0 + v2*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample);
break;
}
return faceSampleNum;
}
/// Compute a sampling of the surface where the points are regularly scattered over the face surface using a recursive longest-edge subdivision rule.
static void FaceSubdivision(MetroMesh & m, VertexSampler &ps,int sampleNum, bool randSample)
{
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
ScalarType samplePerAreaUnit = sampleNum/area;
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
std::vector<FacePointer> faceVec;
FillAndShuffleFacePointerVector(m,faceVec);
vcg::tri::UpdateNormals<MetroMesh>::PerFaceNormalized(m);
vcg::tri::UpdateFlags<MetroMesh>::FaceProjection(m);
double floatSampleNum = 0.0;
int faceSampleNum;
// Subdivision sampling.
typename std::vector<FacePointer>::iterator fi;
for(fi=faceVec.begin(); fi!=faceVec.end(); fi++)
{
const CoordType b0(1.0, 0.0, 0.0);
const CoordType b1(0.0, 1.0, 0.0);
const CoordType b2(0.0, 0.0, 1.0);
// compute # samples in the current face.
floatSampleNum += 0.5*DoubleArea(**fi) * samplePerAreaUnit;
faceSampleNum = (int) floatSampleNum;
if(faceSampleNum>0)
faceSampleNum = SingleFaceSubdivision(faceSampleNum,b0,b1,b2,ps,*fi,randSample);
floatSampleNum -= (double) faceSampleNum;
}
}
//---------
// Subdivision sampling of a single face.
// return number of added samples
static int SingleFaceSubdivisionOld(int sampleNum, const CoordType & v0, const CoordType & v1, const CoordType & v2, VertexSampler &ps, FacePointer fp, bool randSample)
{
// recursive face subdivision.
if(sampleNum == 1)
{
// ground case.
CoordType SamplePoint;
if(randSample)
{
CoordType rb=RandomBaricentric();
SamplePoint=v0*rb[0]+v1*rb[1]+v2*rb[2];
}
else SamplePoint=((v0+v1+v2)*(1.0f/3.0f));
CoordType SampleBary;
// int axis;
// if(fp->Flags() & FaceType::NORMX ) axis = 0;
// else if(fp->Flags() & FaceType::NORMY ) axis = 1;
// else {
// assert(fp->Flags() & FaceType::NORMZ) ;
// axis =2;
// }
// InterpolationParameters(*fp,axis,SamplePoint,SampleBary);
InterpolationParameters(*fp,SamplePoint,SampleBary[0],SampleBary[1],SampleBary[2]);
ps.AddFace(*fp,SampleBary);
return 1;
}
int s0 = sampleNum /2;
int s1 = sampleNum-s0;
assert(s0>0);
assert(s1>0);
ScalarType w0 = ScalarType(s1)/ScalarType(sampleNum);
ScalarType w1 = 1.0-w0;
// compute the longest edge.
ScalarType maxd01 = SquaredDistance(v0,v1);
ScalarType maxd12 = SquaredDistance(v1,v2);
ScalarType maxd20 = SquaredDistance(v2,v0);
int res;
if(maxd01 > maxd12)
if(maxd01 > maxd20) res = 0;
else res = 2;
else
if(maxd12 > maxd20) res = 1;
else res = 2;
int faceSampleNum=0;
// break the input triangle along the midpoint of the longest edge.
CoordType pp;
switch(res)
{
case 0 : pp = v0*w0 + v1*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,pp,v2,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample);
break;
case 1 : pp = v1*w0 + v2*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,v0,pp,v2,ps,fp,randSample);
break;
case 2 : pp = v0*w0 + v2*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample);
break;
}
return faceSampleNum;
}
/// Compute a sampling of the surface where the points are regularly scattered over the face surface using a recursive longest-edge subdivision rule.
static void FaceSubdivisionOld(MetroMesh & m, VertexSampler &ps,int sampleNum, bool randSample)
{
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
ScalarType samplePerAreaUnit = sampleNum/area;
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
std::vector<FacePointer> faceVec;
FillAndShuffleFacePointerVector(m,faceVec);
tri::UpdateNormals<MetroMesh>::PerFaceNormalized(m);
tri::UpdateFlags<MetroMesh>::FaceProjection(m);
double floatSampleNum = 0.0;
int faceSampleNum;
// Subdivision sampling.
typename std::vector<FacePointer>::iterator fi;
for(fi=faceVec.begin(); fi!=faceVec.end(); fi++)
{
// compute # samples in the current face.
floatSampleNum += 0.5*DoubleArea(**fi) * samplePerAreaUnit;
faceSampleNum = (int) floatSampleNum;
if(faceSampleNum>0)
faceSampleNum = SingleFaceSubdivision(faceSampleNum,(**fi).V(0)->cP(), (**fi).V(1)->cP(), (**fi).V(2)->cP(),ps,*fi,randSample);
floatSampleNum -= (double) faceSampleNum;
}
}
//---------
// Similar Triangles sampling.
// Skip vertex and edges
// Sample per edges includes vertexes, so here we should expect n_samples_per_edge >=4
static int SingleFaceSimilar(FacePointer fp, VertexSampler &ps, int n_samples_per_edge)
{
int n_samples=0;
int i, j;
float segmentNum=n_samples_per_edge -1 ;
float segmentLen = 1.0/segmentNum;
// face sampling.
for(i=1; i < n_samples_per_edge-1; i++)
for(j=1; j < n_samples_per_edge-1-i; j++)
{
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
CoordType sampleBary(i*segmentLen,j*segmentLen, 1.0 - (i*segmentLen+j*segmentLen) ) ;
n_samples++;
ps.AddFace(*fp,sampleBary);
}
return n_samples;
}
static int SingleFaceSimilarDual(FacePointer fp, VertexSampler &ps, int n_samples_per_edge, bool randomFlag)
{
int n_samples=0;
float i, j;
float segmentNum=n_samples_per_edge -1 ;
float segmentLen = 1.0/segmentNum;
// face sampling.
for(i=0; i < n_samples_per_edge-1; i++)
for(j=0; j < n_samples_per_edge-1-i; j++)
{
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
CoordType V0((i+0)*segmentLen,(j+0)*segmentLen, 1.0 - ((i+0)*segmentLen+(j+0)*segmentLen) ) ;
CoordType V1((i+1)*segmentLen,(j+0)*segmentLen, 1.0 - ((i+1)*segmentLen+(j+0)*segmentLen) ) ;
CoordType V2((i+0)*segmentLen,(j+1)*segmentLen, 1.0 - ((i+0)*segmentLen+(j+1)*segmentLen) ) ;
n_samples++;
if(randomFlag) {
CoordType rb=RandomBaricentric();
ps.AddFace(*fp, V0*rb[0]+V1*rb[1]+V2*rb[2]);
} else ps.AddFace(*fp,(V0+V1+V2)/3.0);
if( j < n_samples_per_edge-i-2 )
{
CoordType V3((i+1)*segmentLen,(j+1)*segmentLen, 1.0 - ((i+1)*segmentLen+(j+1)*segmentLen) ) ;
n_samples++;
if(randomFlag) {
CoordType rb=RandomBaricentric();
ps.AddFace(*fp, V3*rb[0]+V1*rb[1]+V2*rb[2]);
} else ps.AddFace(*fp,(V3+V1+V2)/3.0);
}
}
return n_samples;
}
// Similar sampling
// Each triangle is subdivided into similar triangles following a generalization of the classical 1-to-4 splitting rule of triangles.
// According to the level of subdivision <k> you get 1, 4 , 9, 16 , <k^2> triangles.
// Depending on the kind of the sampling strategies we can have two different approach to choosing the sample points.
// 1) you have already sampled both edges and vertices
// 2) you are not going to take samples on edges and vertices.
//
// In the first case you have to consider only internal vertices of the subdivided triangles (to avoid multiple sampling of edges and vertices).
// Therefore the number of internal points is ((k-3)*(k-2))/2. where k is the number of points on an edge (vertex included)
// E.g. for k=4 you get 3 segments on each edges and the original triangle is subdivided
// into 9 smaller triangles and you get (1*2)/2 == 1 only a single internal point.
// So if you want N samples in a triangle you have to solve k^2 -5k +6 - 2N = 0
// from which you get:
//
// 5 + sqrt( 1 + 8N )
// k = -------------------
// 2
//
// In the second case if you are not interested to skip the sampling on edges and vertices you have to consider as sample number the number of triangles.
// So if you want N samples in a triangle, the number <k> of points on an edge (vertex included) should be simply:
// k = 1 + sqrt(N)
// examples:
// N = 4 -> k = 3
// N = 9 -> k = 4
//template <class MetroMesh>
//void Sampling<MetroMesh>::SimilarFaceSampling()
static void FaceSimilar(MetroMesh & m, VertexSampler &ps,int sampleNum, bool dualFlag, bool randomFlag)
{
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
ScalarType samplePerAreaUnit = sampleNum/area;
// Similar Triangles sampling.
2008-07-01 11:34:43 +02:00
int n_samples_per_edge;
double n_samples_decimal = 0.0;
FaceIterator fi;
for(fi=m.face.begin(); fi != m.face.end(); fi++)
{
// compute # samples in the current face.
n_samples_decimal += 0.5*DoubleArea(*fi) * samplePerAreaUnit;
int n_samples = (int) n_samples_decimal;
if(n_samples>0)
{
// face sampling.
if(dualFlag)
{
n_samples_per_edge = (int)((sqrt(1.0+8.0*(double)n_samples) +5.0)/2.0); // original for non dual case
n_samples = SingleFaceSimilar(&*fi,ps, n_samples_per_edge);
} else {
n_samples_per_edge = (int)(sqrt((double)n_samples) +1.0);
n_samples = SingleFaceSimilarDual(&*fi,ps, n_samples_per_edge,randomFlag);
}
}
n_samples_decimal -= (double) n_samples;
}
}
// Rasterization fuction
// Take a triangle
// T deve essere una classe funzionale che ha l'operatore ()
// con due parametri x,y di tipo S esempio:
// class Foo { public void operator()(int x, int y ) { ??? } };
// This function does rasterization with a safety buffer area, thus accounting some points actually outside triangle area
// The safety area samples are generated according to face flag BORDER which should be true for texture space border edges
// Use correctSafePointsBaryCoords = true to map safety texels to closest point barycentric coords (on edge).
static void SingleFaceRaster(typename MetroMesh::FaceType &f, VertexSampler &ps,
const Point2<typename MetroMesh::ScalarType> & v0,
const Point2<typename MetroMesh::ScalarType> & v1,
const Point2<typename MetroMesh::ScalarType> & v2,
bool correctSafePointsBaryCoords=true)
{
typedef typename MetroMesh::ScalarType S;
// Calcolo bounding box
Box2i bbox;
if(v0[0]<v1[0]) { bbox.min[0]=int(v0[0]); bbox.max[0]=int(v1[0]); }
else { bbox.min[0]=int(v1[0]); bbox.max[0]=int(v0[0]); }
if(v0[1]<v1[1]) { bbox.min[1]=int(v0[1]); bbox.max[1]=int(v1[1]); }
else { bbox.min[1]=int(v1[1]); bbox.max[1]=int(v0[1]); }
if(bbox.min[0]>int(v2[0])) bbox.min[0]=int(v2[0]);
else if(bbox.max[0]<int(v2[0])) bbox.max[0]=int(v2[0]);
if(bbox.min[1]>int(v2[1])) bbox.min[1]=int(v2[1]);
else if(bbox.max[1]<int(v2[1])) bbox.max[1]=int(v2[1]);
// Calcolo versori degli spigoli
Point2<S> d10 = v1 - v0;
Point2<S> d21 = v2 - v1;
Point2<S> d02 = v0 - v2;
// Preparazione prodotti scalari
S b0 = (bbox.min[0]-v0[0])*d10[1] - (bbox.min[1]-v0[1])*d10[0];
S b1 = (bbox.min[0]-v1[0])*d21[1] - (bbox.min[1]-v1[1])*d21[0];
S b2 = (bbox.min[0]-v2[0])*d02[1] - (bbox.min[1]-v2[1])*d02[0];
// Preparazione degli steps
S db0 = d10[1];
S db1 = d21[1];
S db2 = d02[1];
// Preparazione segni
S dn0 = -d10[0];
S dn1 = -d21[0];
S dn2 = -d02[0];
//Calculating orientation
bool flipped = !(d02 * vcg::Point2<S>(-d10[1], d10[0]) >= 0);
// Calculating border edges
Segment2<S> borderEdges[3];
S edgeLength[3];
unsigned char edgeMask = 0;
if (f.IsB(0)) {
borderEdges[0] = Segment2<S>(v0, v1);
edgeLength[0] = borderEdges[0].Length();
edgeMask |= 1;
}
if (f.IsB(1)) {
borderEdges[1] = Segment2<S>(v1, v2);
edgeLength[1] = borderEdges[1].Length();
edgeMask |= 2;
}
if (f.IsB(2)) {
borderEdges[2] = Segment2<S>(v2, v0);
edgeLength[2] = borderEdges[2].Length();
edgeMask |= 4;
}
// Rasterizzazione
double de = v0[0]*v1[1]-v0[0]*v2[1]-v1[0]*v0[1]+v1[0]*v2[1]-v2[0]*v1[1]+v2[0]*v0[1];
for(int x=bbox.min[0]-1;x<=bbox.max[0]+1;++x)
{
bool in = false;
S n[3] = { b0-db0-dn0, b1-db1-dn1, b2-db2-dn2};
for(int y=bbox.min[1]-1;y<=bbox.max[1]+1;++y)
{
if((n[0]>=0 && n[1]>=0 && n[2]>=0) || (n[0]<=0 && n[1]<=0 && n[2]<=0))
{
typename MetroMesh::CoordType baryCoord;
baryCoord[0] = double(-y*v1[0]+v2[0]*y+v1[1]*x-v2[0]*v1[1]+v1[0]*v2[1]-x*v2[1])/de;
baryCoord[1] = -double( x*v0[1]-x*v2[1]-v0[0]*y+v0[0]*v2[1]-v2[0]*v0[1]+v2[0]*y)/de;
baryCoord[2] = 1-baryCoord[0]-baryCoord[1];
ps.AddTextureSample(f, baryCoord, Point2i(x,y), 0);
in = true;
} else {
// Check whether a pixel outside (on a border edge side) triangle affects color inside it
Point2<S> px(x, y);
Point2<S> closePoint;
int closeEdge = -1;
S minDst = FLT_MAX;
// find the closest point (on some edge) that lies on the 2x2 squared neighborhood of the considered point
for (int i=0, t=0; t<2 && i<3 && (edgeMask>>i)%2 ; ++i)
{
Point2<S> close;
S dst;
if ( (!flipped && n[i]<0 || flipped && n[i]>0) &&
(dst = ((close = ClosestPoint(borderEdges[i], px)) - px).Norm()) < minDst &&
close.X() > px.X()-1 && close.X() < px.X()+1 &&
close.Y() > px.Y()-1 && close.Y() < px.Y()+1)
{
minDst = dst;
closePoint = close;
closeEdge = i;
++t;
}
}
if (closeEdge >= 0)
{
typename MetroMesh::CoordType baryCoord;
if (correctSafePointsBaryCoords)
{
// Add x,y sample with closePoint barycentric coords (on edge)
baryCoord[closeEdge] = (closePoint - borderEdges[closeEdge].P(1)).Norm()/edgeLength[closeEdge];
baryCoord[(closeEdge+1)%3] = 1 - baryCoord[closeEdge];
baryCoord[(closeEdge+2)%3] = 0;
} else {
// Add x,y sample with his own barycentric coords (off edge)
baryCoord[0] = double(-y*v1[0]+v2[0]*y+v1[1]*x-v2[0]*v1[1]+v1[0]*v2[1]-x*v2[1])/de;
baryCoord[1] = -double( x*v0[1]-x*v2[1]-v0[0]*y+v0[0]*v2[1]-v2[0]*v0[1]+v2[0]*y)/de;
baryCoord[2] = 1-baryCoord[0]-baryCoord[1];
}
ps.AddTextureSample(f, baryCoord, Point2i(x,y), minDst);
in = true;
} else if (in) break;
}
n[0] += dn0;
n[1] += dn1;
n[2] += dn2;
}
b0 += db0;
b1 += db1;
b2 += db2;
}
}
2009-01-15 18:03:08 +01:00
// Generate a random point in volume defined by a box with uniform distribution
static CoordType RandomBox(vcg::Box3<ScalarType> box)
{
CoordType p = box.min;
p[0] += box.Dim()[0] * RandomDouble01();
p[1] += box.Dim()[1] * RandomDouble01();
p[2] += box.Dim()[2] * RandomDouble01();
return p;
}
// generate Poisson-disk sample using a set of pre-generated samples (with the Montecarlo algorithm)
// It always return a point.
2009-11-30 16:53:23 +01:00
static VertexPointer getPrecomputedMontecarloSample(Point3i &cell, MontecarloSHT & samplepool)
{
MontecarloSHTIterator cellBegin;
MontecarloSHTIterator cellEnd;
2009-11-30 16:53:23 +01:00
samplepool.Grid(cell, cellBegin, cellEnd);
return *cellBegin;
}
// check the radius constrain
static bool checkPoissonDisk(MetroMesh & vmesh, SampleSHT & sht, const Point3<ScalarType> & p, ScalarType radius)
{
// get the samples closest to the given one
std::vector<VertexType*> closests;
2009-01-20 00:18:10 +01:00
typedef VertTmark<MetroMesh> MarkerVert;
static MarkerVert mv;
2009-01-20 00:18:10 +01:00
Box3f bb(p-Point3f(radius,radius,radius),p+Point3f(radius,radius,radius));
int nsamples = GridGetInBox(sht, mv, bb, closests);
ScalarType r2 = radius*radius;
for(int i=0; i<closests.size(); ++i)
if(SquaredDistance(p,closests[i]->cP()) < r2)
return false;
return true;
}
struct PoissonDiskParam
{
PoissonDiskParam()
{
adaptiveRadiusFlag = false;
radiusVariance =1;
MAXLEVELS = 5;
invertQuality = false;
preGenFlag = false;
preGenMesh = NULL;
}
bool adaptiveRadiusFlag;
float radiusVariance;
bool invertQuality;
bool preGenFlag; // when generating a poisson distribution, you can initialize the set pof omputed points with ALL the vertices of another mesh. Usefull for building progressive refinements.
MetroMesh *preGenMesh;
int MAXLEVELS;
};
static ScalarType ComputePoissonDiskRadius(MetroMesh &origMesh, int sampleNum)
{
ScalarType meshArea = Stat<MetroMesh>::ComputeMeshArea(origMesh);
// Manage approximately the PointCloud Case, use the half a area of the bbox.
// TODO: If you had the radius a much better approximation could be done.
if(meshArea ==0)
{
meshArea = (origMesh.bbox.DimX()*origMesh.bbox.DimY() +
origMesh.bbox.DimX()*origMesh.bbox.DimZ() +
origMesh.bbox.DimY()*origMesh.bbox.DimZ());
}
ScalarType diskRadius = sqrt(meshArea / (0.7 * M_PI * sampleNum)); // 0.7 is a density factor
return diskRadius;
}
static int ComputePoissonSampleNum(MetroMesh &origMesh, ScalarType diskRadius)
{
ScalarType meshArea = Stat<MetroMesh>::ComputeMeshArea(origMesh);
int sampleNum = meshArea / (diskRadius*diskRadius *M_PI *0.7) ; // 0.7 is a density factor
return sampleNum;
}
static void ComputePoissonSampleRadii(MetroMesh &sampleMesh, ScalarType diskRadius, ScalarType radiusVariance, bool invert)
{
VertexIterator vi;
std::pair<float,float> minmax = tri::Stat<MetroMesh>::ComputePerVertexQualityMinMax( sampleMesh);
float minRad = diskRadius / radiusVariance;
float maxRad = diskRadius * radiusVariance;
float deltaQ = minmax.second-minmax.first;
float deltaRad = maxRad-minRad;
for (vi = sampleMesh.vert.begin(); vi != sampleMesh.vert.end(); vi++)
{
(*vi).Q() = minRad + deltaRad*((invert ? minmax.second - (*vi).Q() : (*vi).Q() - minmax.first )/deltaQ);
}
}
// Trivial approach that puts all the samples in a UG and removes all the ones that surely do not fit the
static void PoissonDiskPruning(MetroMesh &origMesh, VertexSampler &ps, MetroMesh &montecarloMesh, ScalarType diskRadius, const struct PoissonDiskParam pp=PoissonDiskParam())
2009-11-30 16:53:23 +01:00
{
// spatial index of montecarlo samples - used to choose a new sample to insert
MontecarloSHT montecarloSHT;
// initialize spatial hash table for searching
// radius is the radius of empty disk centered over the samples (e.g. twice of the empty space disk)
// This radius implies that when we pick a sample in a cell all that cell will not be touched again.
ScalarType cellsize = 2.0f* diskRadius / sqrt(3.0);
// inflating
origMesh.bbox.Offset(cellsize);
int sizeX = vcg::math::Max(1.0f,origMesh.bbox.DimX() / cellsize);
int sizeY = vcg::math::Max(1.0f,origMesh.bbox.DimY() / cellsize);
int sizeZ = vcg::math::Max(1.0f,origMesh.bbox.DimZ() / cellsize);
Point3i gridsize(sizeX, sizeY, sizeZ);
#ifdef QT_VERSION
qDebug("PDS: radius %f Grid:(%i %i %i) ",diskRadius,sizeX,sizeY,sizeZ);
QTime tt; tt.start();
#endif
// if we are doing variable density sampling we have to prepare the random samples quality with the correct expected radii.
if(pp.adaptiveRadiusFlag)
ComputePoissonSampleRadii(montecarloMesh, diskRadius, pp.radiusVariance, pp.invertQuality);
montecarloSHT.InitEmpty(origMesh.bbox, gridsize);
for (VertexIterator vi = montecarloMesh.vert.begin(); vi != montecarloMesh.vert.end(); vi++)
montecarloSHT.Add(&(*vi));
montecarloSHT.UpdateAllocatedCells();
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
std::random_shuffle(montecarloSHT.AllocatedCells.begin(),montecarloSHT.AllocatedCells.end(), p_myrandom);
#ifdef QT_VERSION
2010-03-26 10:43:45 +01:00
qDebug("PDS: Completed creation of activeCells, %i cells (%i msec)", (int)montecarloSHT.AllocatedCells.size(), tt.restart());
#endif
int removedCnt=0;
if(pp.preGenFlag)
{
// Initial pass for pruning the Hashed grid with the an eventual pre initialized set of samples
for(VertexIterator vi =pp.preGenMesh->vert.begin(); vi!=pp.preGenMesh->vert.end();++vi)
{
ps.AddVert(*vi);
removedCnt += montecarloSHT.RemoveInSphere(vi->cP(),diskRadius);
}
montecarloSHT.UpdateAllocatedCells();
#ifdef QT_VERSION
qDebug("Removed %i samples in %i",removedCnt,tt.restart());
#endif
}
while(!montecarloSHT.AllocatedCells.empty())
{
removedCnt=0;
for (size_t i = 0; i < montecarloSHT.AllocatedCells.size(); i++)
{
if( montecarloSHT.EmptyCell(montecarloSHT.AllocatedCells[i]) ) continue;
VertexPointer sp = getPrecomputedMontecarloSample(montecarloSHT.AllocatedCells[i], montecarloSHT);
ps.AddVert(*sp);
ScalarType sampleRadius = diskRadius;
if(pp.adaptiveRadiusFlag) sampleRadius = sp->Q();
removedCnt += montecarloSHT.RemoveInSphere(sp->cP(),sampleRadius);
}
#ifdef QT_VERSION
qDebug("Removed %i samples in %i",removedCnt,tt.restart());
#endif
montecarloSHT.UpdateAllocatedCells();
}
}
/** Compute a Poisson-disk sampling of the surface.
* The radius of the disk is computed according to the estimated sampling density.
*
* This algorithm is an adaptation of the algorithm of White et al. :
*
* "Poisson Disk Point Set by Hierarchical Dart Throwing"
* K. B. White, D. Cline, P. K. Egbert,
* IEEE Symposium on Interactive Ray Tracing, 2007,
* 10-12 Sept. 2007, pp. 129-132.
*/
static void PoissonDisk(MetroMesh &origMesh, VertexSampler &ps, MetroMesh &montecarloMesh, ScalarType diskRadius, const struct PoissonDiskParam pp=PoissonDiskParam())
{
// spatial index of montecarlo samples - used to choose a new sample to insert
MontecarloSHT montecarloSHTVec[5];
// initialize spatial hash table for searching
// radius is the radius of empty disk centered over the samples (e.g. twice of the empty space disk)
// This radius implies that when we pick a sample in a cell all that cell will not be touched again.
2009-11-30 16:53:23 +01:00
ScalarType cellsize = 2.0f* diskRadius / sqrt(3.0);
2008-11-17 13:52:17 +01:00
// inflating
origMesh.bbox.Offset(cellsize);
2009-01-29 11:49:34 +01:00
int sizeX = vcg::math::Max(1.0f,origMesh.bbox.DimX() / cellsize);
int sizeY = vcg::math::Max(1.0f,origMesh.bbox.DimY() / cellsize);
int sizeZ = vcg::math::Max(1.0f,origMesh.bbox.DimZ() / cellsize);
Point3i gridsize(sizeX, sizeY, sizeZ);
#ifdef QT_VERSION
qDebug("PDS: radius %f Grid:(%i %i %i) ",diskRadius,sizeX,sizeY,sizeZ);
2009-11-30 16:53:23 +01:00
QTime tt; tt.start();
#endif
// spatial hash table of the generated samples - used to check the radius constrain
SampleSHT checkSHT;
checkSHT.InitEmpty(origMesh.bbox, gridsize);
// sampling algorithm
// ------------------
//
// - generate millions of samples using montecarlo algorithm
// - extract a cell (C) from the active cell list (with probability proportional to cell's volume)
2009-01-21 18:39:40 +01:00
// - generate a sample inside C by choosing one of the contained pre-generated samples
// - if the sample violates the radius constrain discard it, and add the cell to the cells-to-subdivide list
// - iterate until the active cell list is empty or a pre-defined number of subdivisions is reached
//
int level = 0;
// initialize spatial hash to index pre-generated samples
montecarloSHTVec[0].InitEmpty(origMesh.bbox, gridsize);
// create active cell list
for (VertexIterator vi = montecarloMesh.vert.begin(); vi != montecarloMesh.vert.end(); vi++)
montecarloSHTVec[0].Add(&(*vi));
montecarloSHTVec[0].UpdateAllocatedCells();
// if we are doing variable density sampling we have to prepare the random samples quality with the correct expected radii.
if(pp.adaptiveRadiusFlag)
ComputePoissonSampleRadii(montecarloMesh, diskRadius, pp.radiusVariance, pp.invertQuality);
do
{
MontecarloSHT &montecarloSHT = montecarloSHTVec[level];
if(level>0)
{// initialize spatial hash with the remaining points
montecarloSHT.InitEmpty(origMesh.bbox, gridsize);
// create active cell list
for (typename MontecarloSHT::HashIterator hi = montecarloSHTVec[level-1].hash_table.begin(); hi != montecarloSHTVec[level-1].hash_table.end(); hi++)
montecarloSHT.Add((*hi).second);
montecarloSHT.UpdateAllocatedCells();
}
// shuffle active cells
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
2009-11-30 16:53:23 +01:00
std::random_shuffle(montecarloSHT.AllocatedCells.begin(),montecarloSHT.AllocatedCells.end(), p_myrandom);
#ifdef QT_VERSION
qDebug("PDS: Init of Hashing grid %i cells and %i samples (%i msec)", montecarloSHT.AllocatedCells.size(), montecarloSHT.hash_table.size(), tt.restart());
#endif
// generate a sample inside C by choosing one of the contained pre-generated samples
//////////////////////////////////////////////////////////////////////////////////////////
int removedCnt=montecarloSHT.hash_table.size();
int addedCnt=checkSHT.hash_table.size();
for (int i = 0; i < montecarloSHT.AllocatedCells.size(); i++)
{
for(int j=0;j<4;j++)
{
if( montecarloSHT.EmptyCell(montecarloSHT.AllocatedCells[i]) ) continue;
// generate a sample chosen from the pre-generated one
typename MontecarloSHT::HashIterator hi = montecarloSHT.hash_table.find(montecarloSHT.AllocatedCells[i]);
if(hi==montecarloSHT.hash_table.end()) {break;}
VertexPointer sp = (*hi).second;
2009-01-21 18:39:40 +01:00
// vr spans between 3.0*r and r / 4.0 according to vertex quality
ScalarType sampleRadius = diskRadius;
if(pp.adaptiveRadiusFlag) sampleRadius = sp->Q();
if (checkPoissonDisk(*ps.m, checkSHT, sp->cP(), sampleRadius))
{
ps.AddVert(*sp);
montecarloSHT.RemoveCell(sp);
checkSHT.Add(sp);
break;
}
else
montecarloSHT.RemovePunctual(sp);
}
}
addedCnt = checkSHT.hash_table.size()-addedCnt;
removedCnt = removedCnt-montecarloSHT.hash_table.size();
// proceed to the next level of subdivision
// increase grid resolution
gridsize *= 2;
2009-01-16 16:01:46 +01:00
//
#ifdef QT_VERSION
qDebug("PDS: Pruning %i added %i and removed %i samples (%i msec)",level,addedCnt, removedCnt,tt.restart());
#endif
level++;
} while(level < 5);
2008-11-17 13:52:17 +01:00
}
//template <class MetroMesh>
//void Sampling<MetroMesh>::SimilarFaceSampling()
// This function also generates samples outside faces if those affects faces in texture space.
// Use correctSafePointsBaryCoords = true to map safety texels to closest point barycentric coords (on edge)
// otherwise obtained samples will map to barycentric coord actually outside face
//
// If you don't need to get those extra points clear faces Border Flags
// vcg::tri::UpdateFlags<Mesh>::FaceClearB(m);
//
// Else make sure to update border flags from texture space FFadj
// vcg::tri::UpdateTopology<Mesh>::FaceFaceFromTexCoord(m);
// vcg::tri::UpdateFlags<Mesh>::FaceBorderFromFF(m);
static void Texture(MetroMesh & m, VertexSampler &ps, int textureWidth, int textureHeight, bool correctSafePointsBaryCoords=true)
{
2008-11-17 13:52:17 +01:00
FaceIterator fi;
2008-11-17 13:52:17 +01:00
printf("Similar Triangles face sampling\n");
for(fi=m.face.begin(); fi != m.face.end(); fi++)
{
Point2f ti[3];
for(int i=0;i<3;++i)
ti[i]=Point2f((*fi).WT(i).U() * textureWidth - 0.5, (*fi).WT(i).V() * textureHeight + 0.5);
// +/- 0.5 constants are used to obtain correct texture mapping
SingleFaceRaster(*fi, ps, ti[0],ti[1],ti[2], correctSafePointsBaryCoords);
}
}
typedef GridStaticPtr<FaceType, ScalarType > TriMeshGrid;
class RRParam
{
public:
float offset;
float minDiag;
tri::FaceTmark<MetroMesh> markerFunctor;
TriMeshGrid gM;
};
static void RegularRecursiveOffset(MetroMesh & m, std::vector<Point3f> &pvec, ScalarType offset, float minDiag)
{
Box3<ScalarType> bb=m.bbox;
bb.Offset(offset*2.0);
RRParam rrp;
rrp.markerFunctor.SetMesh(&m);
rrp.gM.Set(m.face.begin(),m.face.end(),bb);
rrp.offset=offset;
rrp.minDiag=minDiag;
SubdivideAndSample(m, pvec, bb, rrp, bb.Diag());
}
static void SubdivideAndSample(MetroMesh & m, std::vector<Point3f> &pvec, const Box3<ScalarType> bb, RRParam &rrp, float curDiag)
{
Point3f startPt = bb.Center();
ScalarType dist;
// Compute mesh point nearest to bb center
FaceType *nearestF=0;
float dist_upper_bound = curDiag+rrp.offset;
Point3f closestPt;
vcg::face::PointDistanceBaseFunctor<ScalarType> PDistFunct;
dist=dist_upper_bound;
nearestF = rrp.gM.GetClosest(PDistFunct,rrp.markerFunctor,startPt,dist_upper_bound,dist,closestPt);
curDiag /=2;
if(dist < dist_upper_bound)
{
if(curDiag/3 < rrp.minDiag) //store points only for the last level of recursion (?)
{
if(rrp.offset==0)
pvec.push_back(closestPt);
else
{
if(dist>rrp.offset) // points below the offset threshold cannot be displaced at the right offset distance, we can only make points nearer.
{
Point3f delta = startPt-closestPt;
pvec.push_back(closestPt+delta*(rrp.offset/dist));
}
}
}
if(curDiag < rrp.minDiag) return;
Point3f hs = (bb.max-bb.min)/2;
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
for(int k=0;k<2;k++)
SubdivideAndSample(m,pvec,
Box3f(Point3f( bb.min[0]+i*hs[0], bb.min[1]+j*hs[1], bb.min[2]+k*hs[2]),
Point3f(startPt[0]+i*hs[0],startPt[1]+j*hs[1],startPt[2]+k*hs[2])),rrp,curDiag);
}
}
}; // end class
} // end namespace tri
} // end namespace vcg
#endif