vcglib/vcg/complex/trimesh/point_sampling.h

1048 lines
35 KiB
C
Raw Normal View History

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
The sampling Class has a set of static functions, that you can call to sample the surface of a mesh.
Each function is templated on the mesh and on a Sampler object s.
Each function calls many time the sample object with the sampling point as parameter.
2009-01-12 17:11:37 +01:00
Sampler Classes and Sampling algorithms are independent.
Sampler classes exploits the sample that are generated with various algorithms.
2009-01-12 17:11:37 +01:00
For example, you can compute Hausdorff distance (that is a sampler) using various
sampling strategies (montecarlo, stratified etc).
****************************************************************************/
#ifndef __VCGLIB_POINT_SAMPLING
#define __VCGLIB_POINT_SAMPLING
#include <vcg/math/random_generator.h>
2009-01-09 18:05:10 +01:00
#include <vcg/complex/trimesh/closest.h>
#include <vcg/space/index/spatial_hashing.h>
#include <vcg/complex/trimesh/stat.h>
2008-07-20 16:34:26 +02:00
#include <vcg/complex/trimesh/update/topology.h>
#include <vcg/space/box2.h>
namespace vcg
{
namespace tri
{
/// Trivial Sampler, an example sampler object that show the required interface used by the sampling class.
/// Most of the sampling classes call the AddFace method with the face containing the sample and its barycentric coord.
template <class MeshType>
class TrivialSampler
{
public:
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::FaceType FaceType;
TrivialSampler(){};
std::vector<CoordType> sampleVec;
void AddVert(const VertexType &p)
{
sampleVec.push_back(p.cP());
}
void AddFace(const FaceType &f, const CoordType &p)
{
sampleVec.push_back(f.P(0)*p[0] + f.P(1)*p[1] +f.P(2)*p[2] );
}
void AddTextureSample(const FaceType &, const CoordType &, const Point2i &)
{
// Retrieve the color of the sample from the face f using the barycentric coord p
// and write that color in a texture image at position tp[0],tp[1]
}
}; // end class TrivialSampler
template <class MetroMesh, class VertexSampler>
class SurfaceSampling
{
typedef typename MetroMesh::CoordType CoordType;
typedef typename MetroMesh::ScalarType ScalarType;
typedef typename MetroMesh::VertexType VertexType;
typedef typename MetroMesh::VertexPointer VertexPointer;
typedef typename MetroMesh::VertexIterator VertexIterator;
typedef typename MetroMesh::FacePointer FacePointer;
typedef typename MetroMesh::FaceIterator FaceIterator;
typedef typename MetroMesh::FaceType FaceType;
typedef typename MetroMesh::FaceContainer FaceContainer;
typedef typename vcg::SpatialHashTable<FaceType, ScalarType> MeshSHT;
typedef typename vcg::SpatialHashTable<FaceType, ScalarType>::CellIterator MeshSHTIterator;
typedef typename vcg::SpatialHashTable<VertexType, ScalarType> MontecarloSHT;
typedef typename vcg::SpatialHashTable<VertexType, ScalarType>::CellIterator MontecarloSHTIterator;
typedef typename vcg::SpatialHashTable<VertexType, ScalarType> SampleSHT;
typedef typename vcg::SpatialHashTable<VertexType, ScalarType>::CellIterator SampleSHTIterator;
public:
static math::MarsenneTwisterRNG &SamplingRandomGenerator()
{
2009-01-18 20:33:50 +01:00
static math::MarsenneTwisterRNG rnd;
return rnd;
}
// Returns an integer random number in the [0,i-1] interval using the improve Marsenne-Twister method.
static unsigned int RandomInt(unsigned int i)
{
return (SamplingRandomGenerator().generate(0) % i);
}
// Returns a random number in the [0,1) real interval using the improved Marsenne-Twister method.
static double RandomDouble01()
{
return SamplingRandomGenerator().generate01();
}
// Returns a random number in the [0,1] real interval using the improved Marsenne-Twister.
static double RandomDouble01closed()
{
return SamplingRandomGenerator().generate01closed();
}
static void AllVertex(MetroMesh & m, VertexSampler &ps)
{
VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
{
if(!(*vi).IsD())
{
ps.AddVert(*vi);
}
}
}
2008-06-04 15:29:04 +02:00
/// Sample the vertices in a weighted way. Each vertex has a probability of being chosen
2008-06-04 15:29:04 +02:00
/// that is proportional to its quality.
/// It assumes that you are asking a number of vertices smaller than nv;
/// Algorithm:
/// 1) normalize quality so that sum q == 1;
/// 2) shuffle vertices.
/// 3) for each vertices choose it if rand > thr;
static void VertexWeighted(MetroMesh & m, VertexSampler &ps, int sampleNum)
{
2008-06-04 15:29:04 +02:00
ScalarType qSum = 0;
VertexIterator vi;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if(!(*vi).IsD())
qSum += (*vi).Q();
ScalarType samplePerUnit = sampleNum/qSum;
ScalarType floatSampleNum =0;
std::vector<VertexPointer> vertVec;
FillAndShuffleVertexPointerVector(m,vertVec);
2008-06-04 15:29:04 +02:00
std::vector<bool> vertUsed(m.vn,false);
int i=0; int cnt=0;
while(cnt < sampleNum)
{
if(vertUsed[i])
{
floatSampleNum += vertVec[i]->Q() * samplePerUnit;
int vertSampleNum = (int) floatSampleNum;
floatSampleNum -= (float) vertSampleNum;
// for every sample p_i in T...
if(vertSampleNum > 1)
{
ps.AddVert(*vertVec[i]);
cnt++;
vertUsed[i]=true;
}
}
i = (i+1)%m.vn;
}
}
2008-11-20 18:00:30 +01:00
/// Sample the vertices in a uniform way. Each vertex has a probability of being chosen
2008-06-04 15:29:04 +02:00
/// that is proportional to the area it represent.
static void VertexAreaUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
{
VertexIterator vi;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if(!(*vi).IsD())
(*vi).Q() = 0;
FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{
ScalarType areaThird = DoubleArea(*fi)/6.0;
(*fi).V(0).Q()+=areaThird;
(*fi).V(1).Q()+=areaThird;
(*fi).V(2).Q()+=areaThird;
}
2008-06-04 15:29:04 +02:00
VertexWeighted(m,ps,sampleNum);
}
static void FillAndShuffleFacePointerVector(MetroMesh & m, std::vector<FacePointer> &faceVec)
{
FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD()) faceVec.push_back(&*fi);
assert((int)faceVec.size()==m.fn);
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
std::random_shuffle(faceVec.begin(),faceVec.end(), p_myrandom);
}
static void FillAndShuffleVertexPointerVector(MetroMesh & m, std::vector<VertexPointer> &vertVec)
2008-06-04 15:29:04 +02:00
{
VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD()) vertVec.push_back(&*vi);
2008-07-01 11:34:43 +02:00
assert((int)vertVec.size()==m.vn);
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
std::random_shuffle(vertVec.begin(),vertVec.end(), p_myrandom);
2008-06-04 15:29:04 +02:00
}
2008-06-04 15:29:04 +02:00
/// Sample the vertices in a uniform way. Each vertex has the same probabiltiy of being chosen.
static void VertexUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
{
if(sampleNum>=m.vn) {
2008-06-04 15:29:04 +02:00
AllVertex(m,ps);
return;
}
std::vector<VertexPointer> vertVec;
FillAndShuffleVertexPointerVector(m,vertVec);
for(int i =0; i< sampleNum; ++i)
ps.AddVert(*vertVec[i]);
}
static void FaceUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
{
if(sampleNum>=m.fn) {
AllFace(m,ps);
return;
}
std::vector<FacePointer> faceVec;
FillAndShuffleFacePointerVector(m,faceVec);
for(int i =0; i< sampleNum; ++i)
ps.AddFace(*faceVec[i],Barycenter(*faceVec[i]));
}
static void AllFace(MetroMesh & m, VertexSampler &ps)
{
FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
ps.AddFace(*fi,Barycenter(*fi));
}
}
static void AllEdge(MetroMesh & m, VertexSampler &ps)
{
// Edge sampling.
typedef typename UpdateTopology<MetroMesh>::PEdge SimpleEdge;
std::vector< SimpleEdge > Edges;
typename std::vector< SimpleEdge >::iterator ei;
UpdateTopology<MetroMesh>::FillUniqueEdgeVector(m,Edges);
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
{
Point3f interp(0,0,0);
interp[ (*ei).z ]=.5;
interp[((*ei).z+1)%3]=.5;
ps.AddFace(*(*ei).f,interp);
}
}
// Regular Uniform Edge sampling
// Each edge is subdivided in a number of pieces proprtional to its lenght
// Sample are choosen without touching the vertices.
static void EdgeUniform(MetroMesh & m, VertexSampler &ps,int sampleNum)
{
typedef typename UpdateTopology<MetroMesh>::PEdge SimpleEdge;
std::vector< SimpleEdge > Edges;
UpdateTopology<MetroMesh>::FillUniqueEdgeVector(m,Edges);
// First loop compute total edge lenght;
float edgeSum=0;
typename std::vector< SimpleEdge >::iterator ei;
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
edgeSum+=Distance((*ei).v[0]->P(),(*ei).v[1]->P());
2009-01-20 00:18:10 +01:00
//qDebug("Edges %i edge sum %f",Edges.size(),edgeSum);
float sampleLen = edgeSum/sampleNum;
2009-01-20 00:18:10 +01:00
//qDebug("EdgesSamples %i Sampling Len %f",sampleNum,sampleLen);
float rest=0;
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
{
float len = Distance((*ei).v[0]->P(),(*ei).v[1]->P());
float samplePerEdge = floor((len+rest)/sampleLen);
rest = (len+rest) - samplePerEdge * sampleLen;
float step = 1.0/(samplePerEdge+1);
for(int i=0;i<samplePerEdge;++i)
{
Point3f interp(0,0,0);
interp[ (*ei).z ]=step*(i+1);
interp[((*ei).z+1)%3]=1.0-step*(i+1);
ps.AddFace(*(*ei).f,interp);
}
}
}
// Generate the barycentric coords of a random point over a single face,
// with a uniform distribution over the triangle.
// It uses the parallelogram folding trick.
static CoordType RandomBaricentric()
{
CoordType interp;
interp[1] = RandomDouble01();
interp[2] = RandomDouble01();
if(interp[1] + interp[2] > 1.0)
{
interp[1] = 1.0 - interp[1];
interp[2] = 1.0 - interp[2];
}
assert(interp[1] + interp[2] <= 1.0);
interp[0]=1.0-(interp[1] + interp[2]);
return interp;
}
static void StratifiedMontecarlo(MetroMesh & m, VertexSampler &ps,int sampleNum)
{
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
ScalarType samplePerAreaUnit = sampleNum/area;
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
// Montecarlo sampling.
double floatSampleNum = 0.0;
FaceIterator fi;
for(fi=m.face.begin(); fi != m.face.end(); fi++)
if(!(*fi).IsD())
{
// compute # samples in the current face (taking into account of the remainders)
floatSampleNum += 0.5*DoubleArea(*fi) * samplePerAreaUnit;
int faceSampleNum = (int) floatSampleNum;
// for every sample p_i in T...
for(int i=0; i < faceSampleNum; i++)
ps.AddFace(*fi,RandomBaricentric());
floatSampleNum -= (double) faceSampleNum;
}
}
2009-01-09 18:05:10 +01:00
static void Montecarlo(MetroMesh & m, VertexSampler &ps,int sampleNum)
{
typedef std::pair<ScalarType, FacePointer> IntervalType;
std::vector< IntervalType > intervals (m.fn+1);
FaceIterator fi;
int i=0;
intervals[i]=std::make_pair(0,FacePointer(0));
// First loop: build a sequence of consecutive segments proportional to the triangle areas.
for(fi=m.face.begin(); fi != m.face.end(); fi++)
if(!(*fi).IsD())
{
intervals[i+1]=std::make_pair(intervals[i].first+0.5*DoubleArea(*fi), &*fi);
++i;
}
ScalarType meshArea = intervals.back().first;
for(i=0;i<sampleNum;++i)
{
ScalarType val = meshArea * RandomDouble01();
// lower_bound returns the furthermost iterator i in [first, last) such that, for every iterator j in [first, i), *j < value.
// E.g. An iterator pointing to the first element "not less than" val, or end() if every element is less than val.
typename std::vector<IntervalType>::iterator it = lower_bound(intervals.begin(),intervals.end(),std::make_pair(val,FacePointer(0)) );
assert(it != intervals.end());
assert(it != intervals.begin());
assert( (*(it-1)).first <val );
assert( (*(it)).first >= val);
ps.AddFace( *(*it).second, RandomBaricentric() );
}
}
2008-05-29 08:17:09 +02:00
static ScalarType WeightedArea(FaceType f)
{
ScalarType averageQ = ( f.V(0)->Q() + f.V(1)->Q() + f.V(2)->Q() ) /3.0;
return DoubleArea(f)*averageQ/2.0;
}
/// Compute a sampling of the surface that is weighted by the quality
/// the area of each face is multiplied by the average of the quality of the vertices.
/// So the a face with a zero quality on all its vertices is never sampled and a face with average quality 2 get twice the samples of a face with the same area but with an average quality of 1;
static void WeightedMontecarlo(MetroMesh & m, VertexSampler &ps, int sampleNum)
{
assert(tri::HasPerVertexQuality(m));
ScalarType weightedArea = 0;
FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
weightedArea += WeightedArea(*fi);
ScalarType samplePerAreaUnit = sampleNum/weightedArea;
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
2008-05-29 08:17:09 +02:00
// Montecarlo sampling.
double floatSampleNum = 0.0;
for(fi=m.face.begin(); fi != m.face.end(); fi++)
if(!(*fi).IsD())
{
// compute # samples in the current face (taking into account of the remainders)
floatSampleNum += WeightedArea(*fi) * samplePerAreaUnit;
int faceSampleNum = (int) floatSampleNum;
// for every sample p_i in T...
for(int i=0; i < faceSampleNum; i++)
ps.AddFace(*fi,RandomBaricentric());
floatSampleNum -= (double) faceSampleNum;
}
}
// Subdivision sampling of a single face.
// return number of added samples
static int SingleFaceSubdivision(int sampleNum, const CoordType & v0, const CoordType & v1, const CoordType & v2, VertexSampler &ps, FacePointer fp, bool randSample)
{
// recursive face subdivision.
if(sampleNum == 1)
{
// ground case.
CoordType SamplePoint;
if(randSample)
{
CoordType rb=RandomBaricentric();
SamplePoint=v0*rb[0]+v1*rb[1]+v2*rb[2];
}
else SamplePoint=((v0+v1+v2)/3.0f);
CoordType SampleBary;
InterpolationParameters(*fp,SamplePoint,SampleBary[0],SampleBary[1],SampleBary[2]);
ps.AddFace(*fp,SampleBary);
return 1;
}
int s0 = sampleNum /2;
int s1 = sampleNum-s0;
assert(s0>0);
assert(s1>0);
ScalarType w0 = ScalarType(s1)/ScalarType(sampleNum);
ScalarType w1 = 1.0-w0;
// compute the longest edge.
double maxd01 = SquaredDistance(v0,v1);
double maxd12 = SquaredDistance(v1,v2);
double maxd20 = SquaredDistance(v2,v0);
int res;
if(maxd01 > maxd12)
if(maxd01 > maxd20) res = 0;
else res = 2;
else
if(maxd12 > maxd20) res = 1;
else res = 2;
int faceSampleNum=0;
// break the input triangle along the midpoint of the longest edge.
CoordType pp;
switch(res)
{
case 0 : pp = v0*w0 + v1*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,pp,v2,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample);
break;
case 1 : pp = v1*w0 + v2*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,v0,pp,v2,ps,fp,randSample);
break;
case 2 : pp = v0*w0 + v2*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample);
break;
}
return faceSampleNum;
}
/// Compute a sampling of the surface where the points are regularly scattered over the face surface using a recursive longest-edge subdivision rule.
static void FaceSubdivision(MetroMesh & m, VertexSampler &ps,int sampleNum, bool randSample)
{
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
ScalarType samplePerAreaUnit = sampleNum/area;
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
std::vector<FacePointer> faceVec;
FillAndShuffleFacePointerVector(m,faceVec);
double floatSampleNum = 0.0;
int faceSampleNum;
// Subdivision sampling.
typename std::vector<FacePointer>::iterator fi;
for(fi=faceVec.begin(); fi!=faceVec.end(); fi++)
{
// compute # samples in the current face.
floatSampleNum += 0.5*DoubleArea(**fi) * samplePerAreaUnit;
faceSampleNum = (int) floatSampleNum;
if(faceSampleNum>0)
faceSampleNum = SingleFaceSubdivision(faceSampleNum,(**fi).V(0)->cP(), (**fi).V(1)->cP(), (**fi).V(2)->cP(),ps,*fi,randSample);
floatSampleNum -= (double) faceSampleNum;
}
}
// Similar Triangles sampling.
// Skip vertex and edges
// Sample per edges includes vertexes, so here we should expect n_samples_per_edge >=4
static int SingleFaceSimilar(FacePointer fp, VertexSampler &ps, int n_samples_per_edge)
{
int n_samples=0;
int i, j;
float segmentNum=n_samples_per_edge -1 ;
float segmentLen = 1.0/segmentNum;
// face sampling.
for(i=1; i < n_samples_per_edge-1; i++)
for(j=1; j < n_samples_per_edge-1-i; j++)
{
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
CoordType sampleBary(i*segmentLen,j*segmentLen, 1.0 - (i*segmentLen+j*segmentLen) ) ;
n_samples++;
ps.AddFace(*fp,sampleBary);
}
return n_samples;
}
static int SingleFaceSimilarDual(FacePointer fp, VertexSampler &ps, int n_samples_per_edge, bool randomFlag)
{
int n_samples=0;
float i, j;
float segmentNum=n_samples_per_edge -1 ;
float segmentLen = 1.0/segmentNum;
// face sampling.
for(i=0; i < n_samples_per_edge-1; i++)
for(j=0; j < n_samples_per_edge-1-i; j++)
{
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
CoordType V0((i+0)*segmentLen,(j+0)*segmentLen, 1.0 - ((i+0)*segmentLen+(j+0)*segmentLen) ) ;
CoordType V1((i+1)*segmentLen,(j+0)*segmentLen, 1.0 - ((i+1)*segmentLen+(j+0)*segmentLen) ) ;
CoordType V2((i+0)*segmentLen,(j+1)*segmentLen, 1.0 - ((i+0)*segmentLen+(j+1)*segmentLen) ) ;
n_samples++;
if(randomFlag) {
CoordType rb=RandomBaricentric();
ps.AddFace(*fp, V0*rb[0]+V1*rb[1]+V2*rb[2]);
} else ps.AddFace(*fp,(V0+V1+V2)/3.0);
if( j < n_samples_per_edge-i-2 )
{
CoordType V3((i+1)*segmentLen,(j+1)*segmentLen, 1.0 - ((i+1)*segmentLen+(j+1)*segmentLen) ) ;
n_samples++;
if(randomFlag) {
CoordType rb=RandomBaricentric();
ps.AddFace(*fp, V3*rb[0]+V1*rb[1]+V2*rb[2]);
} else ps.AddFace(*fp,(V3+V1+V2)/3.0);
}
}
return n_samples;
}
// Similar sampling
// Each triangle is subdivided into similar triangles following a generalization of the classical 1-to-4 splitting rule of triangles.
// According to the level of subdivision <k> you get 1, 4 , 9, 16 , <k^2> triangles.
// Depending on the kind of the sampling strategies we can have two different approach to choosing the sample points.
// 1) you have already sampled both edges and vertices
// 2) you are not going to take samples on edges and vertices.
//
// In the first case you have to consider only internal vertices of the subdivided triangles (to avoid multiple sampling of edges and vertices).
// Therefore the number of internal points is ((k-3)*(k-2))/2. where k is the number of points on an edge (vertex included)
// E.g. for k=4 you get 3 segments on each edges and the original triangle is subdivided
// into 9 smaller triangles and you get (1*2)/2 == 1 only a single internal point.
// So if you want N samples in a triangle you have to solve k^2 -5k +6 - 2N = 0
// from which you get:
//
// 5 + sqrt( 1 + 8N )
// k = -------------------
// 2
//
// In the second case if you are not interested to skip the sampling on edges and vertices you have to consider as sample number the number of triangles.
// So if you want N samples in a triangle, the number <k> of points on an edge (vertex included) should be simply:
// k = 1 + sqrt(N)
// examples:
// N = 4 -> k = 3
// N = 9 -> k = 4
//template <class MetroMesh>
//void Sampling<MetroMesh>::SimilarFaceSampling()
static void FaceSimilar(MetroMesh & m, VertexSampler &ps,int sampleNum, bool dualFlag, bool randomFlag)
{
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
ScalarType samplePerAreaUnit = sampleNum/area;
// Similar Triangles sampling.
2008-07-01 11:34:43 +02:00
int n_samples_per_edge;
double n_samples_decimal = 0.0;
FaceIterator fi;
for(fi=m.face.begin(); fi != m.face.end(); fi++)
{
// compute # samples in the current face.
n_samples_decimal += 0.5*DoubleArea(*fi) * samplePerAreaUnit;
int n_samples = (int) n_samples_decimal;
if(n_samples>0)
{
// face sampling.
if(dualFlag)
{
n_samples_per_edge = (int)((sqrt(1.0+8.0*(double)n_samples) +5.0)/2.0); // original for non dual case
n_samples = SingleFaceSimilar(&*fi,ps, n_samples_per_edge);
} else {
n_samples_per_edge = (int)(sqrt(n_samples) +1.0);
n_samples = SingleFaceSimilarDual(&*fi,ps, n_samples_per_edge,randomFlag);
}
}
n_samples_decimal -= (double) n_samples;
}
}
// Rasterization fuction
// Take a triangle
// T deve essere una classe funzionale che ha l'operatore ()
// con due parametri x,y di tipo S esempio:
// class Foo { public void operator()(int x, int y ) { ??? } };
static void SingleFaceRaster(FaceType &f, VertexSampler &ps, const Point2<ScalarType> & v0, const Point2<ScalarType> & v1, const Point2<ScalarType> & v2)
{
typedef ScalarType S;
// Calcolo bounding box
Box2i bbox;
2008-12-09 12:36:34 +01:00
if(v0[0]<v1[0]) { bbox.min[0]=int(v0[0]); bbox.max[0]=int(v1[0]); }
else { bbox.min[0]=int(v1[0]); bbox.max[0]=int(v0[0]); }
if(v0[1]<v1[1]) { bbox.min[1]=int(v0[1]); bbox.max[1]=int(v1[1]); }
else { bbox.min[1]=int(v1[1]); bbox.max[1]=int(v0[1]); }
if(bbox.min[0]>int(v2[0])) bbox.min[0]=int(v2[0]);
else if(bbox.max[0]<int(v2[0])) bbox.max[0]=int(v2[0]);
if(bbox.min[1]>int(v2[1])) bbox.min[1]=int(v2[1]);
else if(bbox.max[1]<int(v2[1])) bbox.max[1]=int(v2[1]);
// Calcolo versori degli spigoli
Point2<S> d10 = v1 - v0;
Point2<S> d21 = v2 - v1;
Point2<S> d02 = v0 - v2;
// Preparazione prodotti scalari
S b0 = (bbox.min[0]-v0[0])*d10[1] - (bbox.min[1]-v0[1])*d10[0];
S b1 = (bbox.min[0]-v1[0])*d21[1] - (bbox.min[1]-v1[1])*d21[0];
S b2 = (bbox.min[0]-v2[0])*d02[1] - (bbox.min[1]-v2[1])*d02[0];
// Preparazione degli steps
S db0 = d10[1];
S db1 = d21[1];
S db2 = d02[1];
// Preparazione segni
S dn0 = -d10[0];
S dn1 = -d21[0];
S dn2 = -d02[0];
// Rasterizzazione
double de = v0[0]*v1[1]-v0[0]*v2[1]-v1[0]*v0[1]+v1[0]*v2[1]-v2[0]*v1[1]+v2[0]*v0[1];
for(int x=bbox.min[0];x<=bbox.max[0];++x)
{
bool in = false;
S n0 = b0;
S n1 = b1;
S n2 = b2;
for(int y=bbox.min[1];y<=bbox.max[1];++y)
{
if( (n0>=0 && n1>=0 && n2>=0) || (n0<=0 && n1<=0 && n2<=0) )
{
CoordType baryCoord;
baryCoord[0] = double(-y*v1[0]+v2[0]*y+v1[1]*x-v2[0]*v1[1]+v1[0]*v2[1]-x*v2[1])/de;
baryCoord[1] = -double( x*v0[1]-x*v2[1]-v0[0]*y+v0[0]*v2[1]-v2[0]*v0[1]+v2[0]*y)/de;
baryCoord[2] = 1-baryCoord[0]-baryCoord[1];
ps.AddTextureSample(f, baryCoord, Point2i(x,y));
in = true;
} else if(in) break;
n0 += dn0;
n1 += dn1;
n2 += dn2;
}
b0 += db0;
b1 += db1;
b2 += db2;
}
}
2009-01-15 18:03:08 +01:00
// Generate a random point in volume defined by a box with uniform distribution
static CoordType RandomBox(vcg::Box3<ScalarType> box)
{
CoordType p = box.min;
p[0] += box.Dim()[0] * RandomDouble01();
p[1] += box.Dim()[1] * RandomDouble01();
p[2] += box.Dim()[2] * RandomDouble01();
return p;
}
// generate Poisson-disk sample using a set of pre-generated samples (with the Montecarlo algorithm)
// It always return a point.
static VertexPointer getPrecomputedMontecarloSample(Point3i *cell, MontecarloSHT & samplepool)
{
MontecarloSHTIterator cellBegin;
MontecarloSHTIterator cellEnd;
samplepool.Grid(*cell, cellBegin, cellEnd);
return *cellBegin;
}
// check the radius constrain
static bool checkPoissonDisk(MetroMesh & vmesh, SampleSHT & sht, const Point3<ScalarType> & p, ScalarType radius)
{
// get the samples closest to the given one
std::vector<VertexType*> closests;
std::vector<ScalarType> distances;
std::vector<CoordType> points;
2009-01-20 00:18:10 +01:00
typedef VertTmark<MetroMesh> MarkerVert;
MarkerVert mv;
mv.SetMesh(&vmesh);
typedef vcg::vertex::PointDistanceFunctor<ScalarType> VDistFunct;
VDistFunct fn;
Box3f bb(p-Point3f(radius,radius,radius),p+Point3f(radius,radius,radius));
int nsamples = GridGetInBox(sht, mv, bb, closests);
ScalarType r2 = radius*radius;
for(int i=0; i<closests.size(); ++i)
if(SquaredDistance(p,closests[i]->cP()) < r2)
return false;
return true;
}
struct PoissonDiskParam
{
PoissonDiskParam()
{
adaptiveRadiusFlag = false;
radiusVariance =1;
MAXLEVELS = 5;
invertQuality = false;
}
bool adaptiveRadiusFlag;
float radiusVariance;
bool invertQuality;
int MAXLEVELS;
};
static ScalarType ComputePoissonDiskRadius(MetroMesh &origMesh, int sampleNum)
{
ScalarType meshArea = Stat<MetroMesh>::ComputeMeshArea(origMesh);
// Manage approximately the PointCloud Case, use the half a area of the bbox.
// TODO: If you had the radius a much better approximation could be done.
if(meshArea ==0)
{
meshArea = (origMesh.bbox.DimX()*origMesh.bbox.DimY() +
origMesh.bbox.DimX()*origMesh.bbox.DimZ() +
origMesh.bbox.DimY()*origMesh.bbox.DimZ());
}
ScalarType diskRadius = sqrt(meshArea / (0.7 * M_PI * sampleNum)); // 0.7 is a density factor
return diskRadius;
}
static int ComputePoissonSampleNum(MetroMesh &origMesh, ScalarType diskRadius)
{
ScalarType meshArea = Stat<MetroMesh>::ComputeMeshArea(origMesh);
int sampleNum = meshArea / (diskRadius*diskRadius *M_PI *0.7) ; // 0.7 is a density factor
return sampleNum;
}
static void ComputePoissonSampleRadii(MetroMesh &sampleMesh, ScalarType diskRadius, ScalarType radiusVariance, bool invert)
{
VertexIterator vi;
std::pair<float,float> minmax = tri::Stat<MetroMesh>::ComputePerVertexQualityMinMax( sampleMesh);
float minRad = diskRadius / radiusVariance;
float maxRad = diskRadius * radiusVariance;
float deltaQ = minmax.second-minmax.first;
float deltaRad = maxRad-minRad;
for (vi = sampleMesh.vert.begin(); vi != sampleMesh.vert.end(); vi++)
{
(*vi).Q() = minRad + deltaRad*((invert ? minmax.second - (*vi).Q() : (*vi).Q() - minmax.first )/deltaQ);
}
}
/** Compute a Poisson-disk sampling of the surface.
* The radius of the disk is computed according to the estimated sampling density.
*
* This algorithm is an adaptation of the algorithm of White et al. :
*
* "Poisson Disk Point Set by Hierarchical Dart Throwing"
* K. B. White, D. Cline, P. K. Egbert,
* IEEE Symposium on Interactive Ray Tracing, 2007,
* 10-12 Sept. 2007, pp. 129-132.
*/
static void Poissondisk(MetroMesh &origMesh, VertexSampler &ps, MetroMesh &montecarloMesh, ScalarType diskRadius, const struct PoissonDiskParam pp=PoissonDiskParam())
{
2009-01-16 16:01:46 +01:00
int cellusedcounter[20]; // cells used for each level
int cellstosubdividecounter[20]; // cells to subdivide for each level
int samplesgenerated[20]; // samples generated for each level
int samplesaccepted[20]; // samples accepted for each level
int verticescounter[20]; // vertices added to the spatial hash table
2009-01-16 16:01:46 +01:00
for (int i = 0; i < 20; i++)
{
cellusedcounter[i] = 0;
cellstosubdividecounter[i] = 0;
samplesgenerated[i] = 0;
samplesaccepted[i] = 0;
verticescounter[i] = 0;
}
2009-01-18 20:33:50 +01:00
MetroMesh supportMesh;
// spatial index of montecarlo samples - used to choose a new sample to insert
MontecarloSHT montecarloSHT;
// spatial hash table of the generated samples - used to check the radius constrain
SampleSHT checkSHT;
// initialize spatial hash table for searching
ScalarType cellsize = diskRadius / sqrt(3.0);
2008-11-17 13:52:17 +01:00
// inflating
origMesh.bbox.Offset(cellsize);
2009-01-29 11:49:34 +01:00
int sizeX = vcg::math::Max(1.0f,origMesh.bbox.DimX() / cellsize);
int sizeY = vcg::math::Max(1.0f,origMesh.bbox.DimY() / cellsize);
int sizeZ = vcg::math::Max(1.0f,origMesh.bbox.DimZ() / cellsize);
Point3i gridsize(sizeX, sizeY, sizeZ);
#ifdef QT_VERSION
qDebug("PDS: radius %f Grid:(%i %i %i) ",diskRadius,sizeX,sizeY,sizeZ);
#endif
// initialize spatial hash to index pre-generated samples
VertexIterator vi;
2009-01-16 16:01:46 +01:00
montecarloSHT.InitEmpty(origMesh.bbox, gridsize);
for (vi = montecarloMesh.vert.begin(); vi != montecarloMesh.vert.end(); vi++)
{
montecarloSHT.Add(&(*vi));
2009-01-16 16:01:46 +01:00
verticescounter[0]++;
}
#ifdef QT_VERSION
2009-01-20 00:18:10 +01:00
qDebug("PDS: Completed montercarloSHT, inserted %i vertex in %i cells", montecarloMesh.vn, montecarloSHT.AllocatedCells.size());
#endif
// initialize spatial hash table for check poisson-disk radius constrain
2009-01-16 16:01:46 +01:00
checkSHT.InitEmpty(origMesh.bbox, gridsize);
// sampling algorithm
// ------------------
//
// - generate millions of samples using montecarlo algorithm
// - extract a cell (C) from the active cell list (with probability proportional to cell's volume)
2009-01-21 18:39:40 +01:00
// - generate a sample inside C by choosing one of the contained pre-generated samples
// - if the sample violates the radius constrain discard it, and add the cell to the cells-to-subdivide list
// - iterate until the active cell list is empty or a pre-defined number of subdivisions is reached
//
std::vector<Point3i *> activeCells;
2009-01-21 18:39:40 +01:00
std::vector<VertexType *> nextPoints;
typename std::vector<VertexType *>::iterator nextPointsIt;
typename std::vector<Point3i>::iterator it;
Point3i *currentCell;
vcg::Box3<ScalarType> currentBox;
int level = 0;
// if we are doing variable density sampling we have to prepare the random samples quality with the correct expected radii.
if(pp.adaptiveRadiusFlag)
ComputePoissonSampleRadii(montecarloMesh, diskRadius, pp.radiusVariance, pp.invertQuality);
do
{
// extract a cell (C) from the active cell list (with probability proportional to cell's volume)
///////////////////////////////////////////////////////////////////////////////////////////////////
supportMesh.vert.reserve(montecarloMesh.vn);
// create active cell list
for (it = montecarloSHT.AllocatedCells.begin(); it != montecarloSHT.AllocatedCells.end(); it++)
{
activeCells.push_back(&(*it));
}
int ncell = static_cast<int>(activeCells.size());
2009-01-16 16:01:46 +01:00
cellusedcounter[level] = ncell;
// shuffle active cells
// int index,index2;
// Point3i *temp;
// for (int i = 0; i < ncell/2; i++)
// {
// index = RandomInt(ncell);
// index2 = RandomInt(ncell);
// temp = activeCells[index];
// activeCells[index] = activeCells[index2];
// activeCells[index2] = temp;
// }
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
std::random_shuffle(activeCells.begin(),activeCells.end(), p_myrandom);
// generate a sample inside C by choosing one of the contained pre-generated samples
//////////////////////////////////////////////////////////////////////////////////////////
for (int i = 0; i < ncell; i++)
{
currentCell = activeCells[i];
//vcg::Point3<ScalarType > s; // current sample
// generate a sample chosen from the pre-generated one
VertexPointer sp = getPrecomputedMontecarloSample(currentCell, montecarloSHT);
2009-01-16 16:01:46 +01:00
samplesgenerated[level]++;
2009-01-21 18:39:40 +01:00
// vr spans between 3.0*r and r / 4.0 according to vertex quality
ScalarType sampleRadius = diskRadius;
if(pp.adaptiveRadiusFlag) sampleRadius = sp->Q();
2009-01-21 18:39:40 +01:00
if (checkPoissonDisk(*ps.m, checkSHT, sp->cP(), sampleRadius))
{
// add sample
2009-01-18 20:33:50 +01:00
tri::Allocator<MetroMesh>::AddVertices(supportMesh,1);
supportMesh.vert.back().P() = sp->P();
supportMesh.vert.back().Q() = sampleRadius;
//ps.AddVert(supportMesh.vert.back()); Small change, we should call the sampler class with the input mesh.
ps.AddVert(*sp);
// add to control spatial index
2009-01-18 20:33:50 +01:00
checkSHT.Add(&supportMesh.vert.back());
2009-01-16 16:01:46 +01:00
samplesaccepted[level]++;
}
else
{
// subdivide this cell
2009-01-16 16:01:46 +01:00
///////////////////////////////////////////////////////////////////////
// pre-generated samples for the next level of subdivision
MontecarloSHTIterator ptBegin, ptEnd, ptIt;
2009-01-16 16:01:46 +01:00
montecarloSHT.Grid(*currentCell, ptBegin, ptEnd);
for (ptIt = ptBegin; ptIt != ptEnd; ++ptIt)
2009-01-16 16:01:46 +01:00
{
2009-01-21 18:39:40 +01:00
nextPoints.push_back(*ptIt);
2009-01-16 16:01:46 +01:00
}
cellstosubdividecounter[level]++;
}
}
activeCells.clear();
// proceed to the next level of subdivision
///////////////////////////////////////////////////////////////////////////
// cleaning spatial index data structures
montecarloSHT.Clear();
// increase grid resolution
gridsize[0] *= 2;
gridsize[1] *= 2;
gridsize[2] *= 2;
montecarloSHT.InitEmpty(origMesh.bbox, gridsize);
2009-01-16 16:01:46 +01:00
for (nextPointsIt = nextPoints.begin(); nextPointsIt != nextPoints.end(); nextPointsIt++)
{
2009-01-16 16:01:46 +01:00
montecarloSHT.Add(*nextPointsIt);
verticescounter[level+1]++;
}
2009-01-16 16:01:46 +01:00
nextPoints.clear();
#ifdef QT_VERSION
2009-01-20 00:18:10 +01:00
qDebug("PDS: Completed Level %i, added %i samples",level,samplesaccepted[level]);
#endif
level++;
} while(level < pp.MAXLEVELS);
2009-01-16 16:01:46 +01:00
#ifdef DEBUG_DUMP_STAT
2009-01-16 16:01:46 +01:00
// write some statistics
QFile outfile("C:/temp/poissondisk_statistics.txt");
if (outfile.open(QFile::WriteOnly | QFile::Truncate))
2009-01-16 16:01:46 +01:00
{
2009-01-18 20:33:50 +01:00
QTextStream out(&outfile);
2009-01-16 16:01:46 +01:00
for (int k = 0; k < pp.MAXLEVELS; k++)
2009-01-16 16:01:46 +01:00
out << "Cells used for level " << k << ": " << cellusedcounter[k] << endl;
for (int k = 0; k < pp.MAXLEVELS; k++)
2009-01-16 16:01:46 +01:00
out << "Cells to subdivide for level " << k << ": " << cellstosubdividecounter[k] << endl;
for (int k = 0; k < pp.MAXLEVELS; k++)
2009-01-16 16:01:46 +01:00
out << "Vertices counter for level " << k << ": " << verticescounter[k] << endl;
for (int k = 0; k < pp.MAXLEVELS; k++)
2009-01-16 16:01:46 +01:00
out << "Samples generated for level " << k << ": " << samplesgenerated[k] << endl;
for (int k = 0; k < pp.MAXLEVELS; k++)
2009-01-16 16:01:46 +01:00
out << "Samples accepted for level " << k << ": " << samplesaccepted[k] << endl;
}
outfile.close();
#endif
2008-11-17 13:52:17 +01:00
}
//template <class MetroMesh>
//void Sampling<MetroMesh>::SimilarFaceSampling()
static void Texture(MetroMesh & m, VertexSampler &ps, int textureWidth, int textureHeight)
{
2008-11-17 13:52:17 +01:00
FaceIterator fi;
2008-11-17 13:52:17 +01:00
printf("Similar Triangles face sampling\n");
for(fi=m.face.begin(); fi != m.face.end(); fi++)
{
Point2f ti[3];
for(int i=0;i<3;++i)
ti[i]=Point2f((*fi).WT(i).U() * textureWidth, (*fi).WT(i).V() * textureHeight);
SingleFaceRaster(*fi, ps, ti[0],ti[1],ti[2]);
}
}
}; // end class
} // end namespace tri
} // end namespace vcg
#endif