It takes in input 4 vertex pointrs and rotate them so that a simple fan triangulation is Ok.
It uses geometric criteria for avoiding bad shaped triangles, and folds
and it use an internal set of already created diagonal to avoid the creation of non manifold situations.
NOTE on how to use Append::MEsh with selected elements:
If we want to append only the selected faces of the mesh and call the Append::Mesh
with selected parameter = true, we must ensure that also the cofaces of inferior
order are selected (vertices and edges).
Otherwise what happen is that the vertices are NOT appended and then the appended
(selected) faces cannot be built.
On the other ahnd Append::Mesh will NOT change the selected flag of the input mesh, it must be done
before calling it. (check tri::UpdateSelection<CMeshO>::VertexFromFaceLoose(currentMesh->cm); )
The same problem for the adjacencies with higher order simplexes. In this cases they are simply not updated . For example, if only a few vertices are selected, and they have, say, VFAdj, it is ignored.
the rarely used frompolar and topolar returns angles in RADIANTS
changed the function names to clarify, avoid stupid bugs, and to adequate to the standard
No modification should be necessary for the existing code.
most relevant changes:
creation of folder:
vcg/connectors
vcg/connectors/hedge.h
vcg/connectors/hedge_component.h
addition to the container of half edges to the trimesh:
HEdgeContainer hedge; // container
int hn; // number of half edges
addition of
vcg/trimesh/update/halfedge_indexed.h
which contains:
- the functions to compute the half edge representation from the indexed and vivecersa
- the functions to add or remove an half edge
No modification should be necessary for the existing code.
most relevant changes:
creation of folder:
vcg/connectors
vcg/connectors/hedge.h
vcg/connectors/hedge_component.h
addition to the container of half edges to the trimesh:
HEdgeContainer hedge; // container
int hn; // number of half edges
addition of
vcg/trimesh/update/halfedge_indexed.h
which contains:
- the functions to compute the half edge representation from the indexed and vivecersa
- the functions to add or remove an half edge
No modification should be necessary for the existing code.
most relevant changes:
creation of folder:
vcg/connectors
vcg/connectors/hedge.h
vcg/connectors/hedge_component.h
addition to the container of half edges to the trimesh:
HEdgeContainer hedge; // container
int hn; // number of half edges
addition of
vcg/trimesh/update/halfedge_indexed.h
which contains:
- the functions to compute the half edge representation from the indexed and vivecersa
- the functions to add or remove an half edge
No modification should be necessary for the existing code.
most relevant changes:
creation of folder:
vcg/connectors
vcg/connectors/hedge.h
vcg/connectors/hedge_component.h
addition to the container of half edges to the trimesh:
HEdgeContainer hedge; // container
int hn; // number of half edges
addition of
vcg/trimesh/update/halfedge_indexed.h
which contains:
- the functions to compute the half edge representation from the indexed and vivecersa
- the functions to add or remove an half edge
No modification should be necessary for the existing code.
most relevant changes:
creation of folder:
vcg/connectors
vcg/connectors/hedge.h
vcg/connectors/hedge_component.h
addition to the container of half edges to the trimesh:
HEdgeContainer hedge; // container
int hn; // number of half edges
addition of
vcg/trimesh/update/halfedge_indexed.h
which contains:
- the functions to compute the half edge representation from the indexed and vivecersa
- the functions to add or remove an half edge
No modification should be necessary for the existing code.
most relevant changes:
creation of folder:
vcg/connectors
vcg/connectors/hedge.h
vcg/connectors/hedge_component.h
addition to the container of half edges to the trimesh:
HEdgeContainer hedge; // container
int hn; // number of half edges
addition of
vcg/trimesh/update/halfedge_indexed.h
which contains:
- the functions to compute the half edge representation from the indexed and vivecersa
- the functions to add or remove an half edge
added type traits to support the mod below:
[ Changes in definition of TriMesh: PART II ]
Note: No changes to existing code need be the done, this mod
should be fully backward compatible
Old way to define a TriMesh ==============
struct MyMesh: public vcg::tri::TriMesh< vector<MyVertex> , vector <MyFace> >{};
new ways to define a TriMesh ==============
struct MyMesh: public vcg::tri::TriMesh< CONT1 >{};
struct MyMesh: public vcg::tri::TriMesh< CONT1 , CONT2>{};
struct MyMesh: public vcg::tri::TriMesh< CONT1 , CONT2, CONT3>{};
where CONT[i] can be vector< [MyVertex | MyEdge | MyFace ] >
(the order is unimportant)
[ Changes in definition of TriMesh: PART II ]
Note: No changes to existing code need be the done, this mod
should be fully backward compatible
Old way to define a TriMesh ==============
struct MyMesh: public vcg::tri::TriMesh< vector<MyVertex> , vector <MyFace> >{};
new ways to define a TriMesh ==============
struct MyMesh: public vcg::tri::TriMesh< CONT1 >{};
struct MyMesh: public vcg::tri::TriMesh< CONT1 , CONT2>{};
struct MyMesh: public vcg::tri::TriMesh< CONT1 , CONT2, CONT3>{};
where CONT[i] can be vector< [MyVertex | MyEdge | MyFace ] >
(the order is unimportant)
[ Changes in definition of TriMesh: PART II ]
Note: No changes to existing code need be the done, this mod
should be fully backward compatible
Old way to define a TriMesh ==============
struct MyMesh: public vcg::tri::TriMesh< vector<MyVertex> , vector <MyFace> >{};
new ways to define a TriMesh ==============
struct MyMesh: public vcg::tri::TriMesh< CONT1 >{};
struct MyMesh: public vcg::tri::TriMesh< CONT1 , CONT2>{};
struct MyMesh: public vcg::tri::TriMesh< CONT1 , CONT2, CONT3>{};
where CONT[i] can be vector< [MyVertex | MyEdge | MyFace ] >
(the order is unimportant)
Note: No changes to existing code need be the done, this mod
should be fully backward compatible
Old way to define a TriMesh ==============
struct MyMesh: public vcg::tri::TriMesh< vector<MyVertex> , vector <MyFace> >{};
new ways to define a TriMesh ==============
struct MyMesh: public vcg::tri::TriMesh< CONT1 >{};
struct MyMesh: public vcg::tri::TriMesh< CONT1 , CONT2>{};
struct MyMesh: public vcg::tri::TriMesh< CONT1 , CONT2, CONT3>{};
where CONT[i] can be vector< [MyVertex | MyEdge | MyFace ] >
(the order is unimportant)
and their type, so that one can add an attribute without knowing its type. It is useful
when working with plugin.
example:
vcg::tri::NameTypeScope myScope;
AddNameTypeBound<int>(myScope,std::string("number");
AddNameTypeBound<float>(myScope,std::string("incoming_light"));
we have crated a scope myScope where "number" is bound a int and incoming_light is a float
In another part of code where I may not know the type of "number", I can still do:
AddPerVertexAttribute(myScope, mesh, "number");
and an int attibute name "number" will be added.
Note for the developers: the change to make to existing projects is very little
but strictly necessary to compile. This change IS NOT backward compliant.
==== OLD ==== way to define a TriMesh:
// forward declarations
class MyVertex;
class MyEdge;
class MyFace;
class MyVertex: public VertexSimp2 < MyVertex, MyEdge, MyFace, vertex::Coord3f,...other components>{};
class MyFace: public FaceSimp2 < MyVertex, MyEdge, MyFace, face::VertexRef,...other components>{};
class MyMesh: public TriMesh<vector<MyVertex>,vector<MyFace> >{};
==== NEW ==== way to define a TriMesh:
// forward declarations
class MyVertex;
class MyEdge;
class MyFace;
// declaration of which types is used as VertexType, which type is used as FaceType and so on...
class MyUsedTypes: public vcg::UsedType < vcg::Use<MyVertex>::AsVertexType,
vcg::Use<MyFace>::AsFaceType>{};
class MyVertex: public Vertex < MyUsedTypes, vertex::Coord3f,...other components>{};
class MyFace: public Face < MyUsedTypes, face::VertexRef,...other components>{};
class MyMesh: public TriMesh<vector<MyVertex>,vector<MyFace> >{};
===== classes introduced [vcg::UsedType] : it is a class containing all the types that must be passed to the definition of Vertex, Face, Edge... This
class replaces the list of classes to pass as first templates and the need to specify the maximal simplicial. So
< MyVertex, MyEdge, MyFace, beocmes MyUsedTypes,
and
VertexSimp2 becomes Vertex
[vcg::Use] : an auxiliary class to give a simple way to specify the role of a type
Note 2: the order of templates parameters to vcg::UsedTypes is unimportant, e.g:
class MyUsedTypes: public vcg::UsedType <vcg::Use<MyVertex>::AsVertexType,
vcg::Use<MyEdge>::AsEdgeType,
vcg::Use<MyFace>::AsFaceType>{};
is the same as:
class MyUsedTypes: public vcg::UsedType <vcg::Use<MyFace>::AsFaceType,
vcg::Use<MyEdge>::AsEdgeType,
vcg::Use<MyVertex>::AsVertexType>{};
==== the Part II will be a tiny change to the class TriMesh it self.
Note for the developers: the change to make to existing projects is very little
but strictly necessary to compile. This change IS NOT backward compliant.
==== OLD ==== way to define a TriMesh:
// forward declarations
class MyVertex;
class MyEdge;
class MyFace;
class MyVertex: public VertexSimp2 < MyVertex, MyEdge, MyFace, vertex::Coord3f,...other components>{};
class MyFace: public FaceSimp2 < MyVertex, MyEdge, MyFace, face::VertexRef,...other components>{};
class MyMesh: public TriMesh<vector<MyVertex>,vector<MyFace> >{};
==== NEW ==== way to define a TriMesh:
// forward declarations
class MyVertex;
class MyEdge;
class MyFace;
// declaration of which types is used as VertexType, which type is used as FaceType and so on...
class MyUsedTypes: public vcg::UsedType < vcg::Use<MyVertex>::AsVertexType,
vcg::Use<MyFace>::AsFaceType>{};
class MyVertex: public Vertex < MyUsedTypes, vertex::Coord3f,...other components>{};
class MyFace: public Face < MyUsedTypes, face::VertexRef,...other components>{};
class MyMesh: public TriMesh<vector<MyVertex>,vector<MyFace> >{};
===== classes introduced
[vcg::UsedType] : it is a class containing all the types that must be passed to the definition of Vertex, Face, Edge... This
class replaces the list of typenames to pass as first templates and the need to specify the maximal simplicial. So
<MyVertex, MyEdge, MyFace becomes <MyUsedTypes<
and
VertexSimp2 becomes Vertex
[vcg::Use] : an auxiliary class to give a simple way to specify the role of a type
Note 2: the order of templates parameters to vcg::UsedTypes is unimportant, e.g:
class MyUsedTypes: public vcg::UsedType <vcg::Use<MyVertex>::AsVertexType,
vcg::Use<MyEdge>::AsEdgeType,
vcg::Use<MyFace>::AsFaceType>{};
is the same as:
class MyUsedTypes: public vcg::UsedType <vcg::Use<MyFace>::AsFaceType,
vcg::Use<MyEdge>::AsEdgeType,
vcg::Use<MyVertex>::AsVertexType>{};
Note 3: you only need to specify the type you use. If you do not have edges you do not need
to include vcg::Use<MyEdge>::AsEdgeType in the template list of UsedTypes.
==== the Part II will be a tiny change to the class TriMesh it self.